Toward Practical Lattice-based Proof of Knowledge from Hint-MLWE

Duhyeong Kim Dongwon Lee, Jinyeong Seo, Yongsoo Song
Intel Labs
intel
Seoul National University

CRYPTO 2023
Aug 23, 2023

Background

Background

Proof of Knowledge (PoK)

- Zero-knowledge : the verifier does not learn anything about the witness
- There exists a simulator that simulates the transcript

Background

Lattice-based PoK for linear relation

- High-Level Description
- Public: $\mathbf{B} \in R_{q}^{k \times \ell}, \mathbf{c} \in R_{q}^{k}$ for $k<\ell \quad$ (R : polynomial ring)
- We want to prove the knowledge of $\mathbf{r} \in R^{\ell}$ and $\mathbf{m} \in \mathcal{M}\left(\subset R_{q}^{k}\right)$ s.t.

$$
\mathbf{c}=\mathbf{B r}+\mathbf{m}(\bmod q) \quad \text { and } \quad\|\mathbf{r}\|_{2} \leq \beta .
$$

Background

Lattice-based PoK for linear relation

- BFV encryption

■ Parameters : Ciphertext modulus q, plaintext modulus $t \mid q$, error distribution χ.

- Public key : $\mathbf{p}=\left(p_{0}, p_{1}\right)^{T} \in R_{q}^{2}$
- Ciphertext : For a message $m \in R_{t}$, the encryption algorithm samples $\mathbf{r}=\left(r_{0}, r_{1}, r_{2}\right) \leftarrow \chi^{3}$ and return

$$
\mathbf{c}=r_{2} \cdot \mathbf{p}+\left(r_{0}+(q / t) \cdot m, r_{1}\right)^{T}(\bmod q)
$$

- The BFV ciphertext can also be expressed as

$$
\mathbf{c}=\mathbf{B r}+\mathbf{m}(\bmod q)
$$

where $\mathbf{B}=\left[\mathbf{I}_{\mathbf{2}} \mid \mathbf{p}\right] \in R_{q}^{2 \times 3}$ and $\mathbf{m}=((q / t) \cdot m, 0)^{T}$.

- Proof of Plaintext Knowledge (PPK) for BFV encryption:

To prove the knowledge of the message \mathbf{m} and the encryption randomness \mathbf{r} for given ciphertext \mathbf{c}

Background

Lattice-based PoK for linear relation

- BDLOP commitment
- Parameters : Modulus q, error distribution χ.
- Commitment key : $\mathbf{B}=\mathbf{R} \cdot\left[\mathbf{I}_{k} \mid \mathbf{A}\right] \in R_{q}^{k \times \ell}$ for $\mathbf{A} \in R_{q}^{k \times(k-\ell)}$ and invertible $\mathbf{R} \in R_{q}^{k \times k}$
- Commitment : For a message $m \in R_{q}$, the commitment algorithm samples $\mathbf{r} \leftarrow \chi^{\ell}$ and return

$$
\mathbf{c}=\mathbf{B r}+\mathbf{m}(\bmod q)
$$

where $\mathbf{m}=\left[\begin{array}{c}\mathbf{0} \\ m\end{array}\right]$.

- Proof of Opening Knowledge (POK) for BDLOP commitment:

To prove the knowledge of the message \mathbf{m} and the commitment randomness \mathbf{r} for given commitment \mathbf{c}

Motivation

Motivation

Zero-Knowledge "Overkill"

- Conventional goal of Zero-knowledge:

Zero-knowledge w.r.t. both message m and randomness r

- BUT! Zero-knowledge of randomness can be an overkill for many of PoK applications
- Then, the natural question would be:
- How about refining the goal of zero-knowledge as following?

Zero-knowledge w.r.t. only message m

- Can we still achieve zero-knowledge of \mathbf{m} while allowing the leakage of \mathbf{r} information?

Motivation

Previous Approaches

- Σ-protocol Framework:

Prover

Generate random elements: $\mathbf{u}_{i} \leftarrow \mathcal{M}, \mathbf{y}_{i} \leftarrow D_{r n d}$ for $1 \leq i \leq \ell$

$$
\mathbf{c}=\mathbf{B r}+\mathbf{m}(\bmod q)
$$

Verifier

Generate random challenges:

$$
\gamma_{i} \leftarrow \mathcal{C} \text { for } 1 \leq i \leq \ell
$$

4) Verification:

$$
\begin{gathered}
\mathbf{B z}_{\mathbf{i}}+\mathbf{v}_{\mathbf{i}} \stackrel{?}{=} \mathbf{d}_{i}+\gamma_{i} \cdot \mathbf{c}, \\
\left\|\mathbf{z}^{2}\right\|<B, \\
\text { for } 1 \leq i \leq \ell
\end{gathered}
$$

Motivation

Previous Approaches: Noise Flooding

- For the zero-knowledge proof, previous work adopted statistical methods.

Prover

Generate random elements: $\mathbf{u}_{i} \leftarrow \mathcal{M}, \mathbf{y}_{i} \leftarrow D_{\text {rnd }}$ for $1 \leq i \leq \ell$
$\mathbf{c}=\mathbf{B r}+\mathbf{m}(\bmod q)$

2) Challenge: $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\ell}\right)$

Noise Flooding
Set $\left\|\left(\mathbf{u}_{i}, \mathbf{y}_{i}\right)\right\| \gg\left\|\gamma_{i} \cdot(\mathbf{m}, \mathbf{r})\right\|$
to make $\left(\mathbf{v}_{i}, \mathbf{z}_{i}\right)$ statistically independent to (\mathbf{m}, \mathbf{r})

Verifier

Generate random challenges:

$$
\gamma_{i} \leftarrow \mathcal{C} \text { for } 1 \leq i \leq \ell
$$

4) Verification:

$$
\begin{gathered}
\mathbf{B z}_{\mathbf{i}}+\mathbf{v}_{\mathbf{i}} \stackrel{?}{=} \mathbf{d}_{i}+\gamma_{i} \cdot \mathbf{c}, \\
\left\|\mathbf{z}_{i}\right\|{ }^{?} B, \\
\text { for } 1 \leq i \leq \ell
\end{gathered}
$$

Motivation

Previous Approaches: Noise Flooding

- For the zero-knowledge proof, previous work adopted statistical methods.

Prover

Generate random elements: $\mathbf{u}_{i} \leftarrow \mathcal{M}, \mathbf{y}_{i} \leftarrow D_{r n d}$ for $1 \leq i \leq \ell$

$$
\mathbf{c}=\mathbf{B r}+\mathbf{m}(\bmod q)
$$

2) Challenge: $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\ell}\right)$

Generate random challenges

$$
\gamma_{i} \leftarrow \mathcal{C} \text { for } 1 \leq i \leq \ell
$$

4) Verification: $\mathbf{B z}_{\mathbf{i}}+\mathbf{v}_{\mathbf{i}} \stackrel{?}{=} \mathbf{d}_{i}+\gamma_{i} \cdot \mathbf{c}$, $\left\|\mathbf{z}_{i}\right\|{ }^{?}{ }^{?} B$, for $1 \leq i \leq \ell$

Motivation

Previous Approaches: Rejection Sampling

- For the zero-knowledge proof, previous work adopted statistical methods.

Motivation

Previous Approaches: Rejection Sampling

- For the zero-knowledge proof, previous work adopted statistical methods.

Motivation

New Framework

- "Refined" zero-knowledge proof based on computational hardness assumption!

Our Work

Our Work

A New Framework on Lattice-based PoK with "refined" Zero-Knowledge

- We first propose secure lattice-based PoK protocols w/o noise flooding or rejection sampling
- Zero-knowledge w.r.t. message holds under the "Hint-MLWE" assumption.
- v.s. noise flooding : exponential \rightarrow polynomial/constant overhead

■ v.s. rejection sampling : $\boldsymbol{O}(\sqrt{\boldsymbol{d i m}})$ smaller soundness slack, no repetition required

- Instantiation on the following primitives:
- Proof of Plaintext Knowledge (PPK) for BFV encryption
- Proof of Opening Knowledge (POK) for BDLOP commitment

O Naturally extendable to various BDLOP-based ZKP applications

- Tight Reduction from MLWE to Hint-MLWE under discrete Gaussian setting

O LWE \rightarrow Hint-LWE \& RLWE \rightarrow Hint-RLWE also hold

Proof Sketch

Zero-Knowledge w.r.t. Message

- Need to show the transcript $\left(\mathbf{c},\left(\mathbf{d}_{i}, \gamma_{i}, \mathbf{v}_{i}, \mathbf{z}_{i}\right)_{\mathrm{i}}\right)$ is simulatable without the message \mathbf{m}

Proof Sketch

Zero-Knowledge w.r.t. Message

- Observation 1: Trivially-simulatable components of the transcript $\left(\mathbf{c},\left(\mathbf{d}_{i}, \gamma_{i}, \mathbf{v}_{i}, \mathbf{z}_{i}\right)_{\mathbf{i}}\right)$:

1. \mathbf{d}_{i} can be generated by the other components and the public key \mathbf{B}
$-\mathbf{d}_{i}=\mathbf{B y}_{i}+\mathbf{u}_{i}=\mathbf{B}\left(\mathbf{z}_{i}-\gamma_{i} \cdot \mathbf{r}\right)+\left(\mathbf{v}_{i}-\gamma_{i} \cdot \mathbf{m}\right)=\mathbf{B z}_{i}+\mathbf{v}_{i}-\gamma_{i} \cdot \mathbf{c}$
2. \mathbf{v}_{i} is also trivially simulatable for each case as following:

- PPK of BFV encryption $\quad: \mathbf{v}_{i}=\mathbf{u}_{i}+\gamma_{i} \cdot \mathbf{m}(\bmod t)$ is uniform modulo t
- POK of BDLOP commitment: $\mathbf{u}_{i}=\mathbf{0}$ \& Do not send \mathbf{v}_{i} to the verifier
- Now, it suffices to simulate $\left(\mathbf{c},\left(\mathbf{z}_{\boldsymbol{i}}\right)_{\boldsymbol{i}}\right)$ for public key \mathbf{B} and challenges $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\ell}\right)$

Proof Sketch

Zero-Knowledge w.r.t. Message

- Observation 2: The tuple ($\mathbf{B}, \mathbf{c}, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{\ell}$) can be expressed as

$$
\left(\mathbf{B}, \mathbf{B r}+\mathbf{m}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right)
$$

- Since $\mathbf{B}=\mathbf{R} \cdot[\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R}, it is equivalent to simulate

$$
\left(\mathbf{A},[\mathbf{I} \mid \mathbf{A}] \mathbf{r}+\mathbf{R}^{\mathbf{- 1}} \cdot \mathbf{m}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right)
$$

Proof Sketch

Zero-Knowledge w.r.t. Message

- Observation 2: The tuple ($\mathbf{B}, \mathbf{c}, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{\ell}$) can be expressed as

$$
\left(\mathbf{B}, \mathbf{B r}+\mathbf{m}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right)
$$

- Since $\mathbf{B}=\mathbf{R} \cdot[\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R}, it is equivalent to simulate

MLWE Instance over the secret \mathbf{r}

Hints on the secret \mathbf{r}

Proof Sketch

Zero-Knowledge w.r.t. Message

- Observation 2: The tuple ($\mathbf{B}, \mathbf{c}, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{\ell}$) can be expressed as

$$
\left(\mathbf{B}, \mathbf{B r}+\mathbf{m}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right)
$$

- Since $\mathbf{B}=\mathbf{R} \cdot[\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R}, it is equivalent to simulate

$$
\begin{aligned}
& \left(\mathbf{A},[\mathbf{I} \mid \mathbf{A}] \mathbf{r}+\mathbf{R}^{\mathbf{- 1}} \cdot \mathbf{m}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right) \\
& \text { ? } ? \\
& \text { (A, uniform } \quad, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell} \text {) }
\end{aligned}
$$

Proof Sketch

Zero-Knowledge w.r.t. Message

- Observation 2: The tuple ($\mathbf{B}, \mathbf{c}, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{\ell}$) can be expressed as

$$
\left(\mathbf{B}, \mathbf{B r}+\mathbf{m}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right)
$$

- Since $\mathbf{B}=\mathbf{R} \cdot[\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R}, it is equivalent to simulate

Hint-MLWE

Definition

- $\mathrm{MLWE}_{R, d, m, q, \sigma}$ Assumption:
$(\mathbf{A},[\mathbf{I} \mid \mathbf{A}] \mathbf{r})$
c $~$
$(\mathbf{A}, \quad \mathbf{b})$
for $\mathbf{A} \leftarrow R_{q}^{m \times d}, \mathbf{b} \leftarrow R_{q}^{m}, \mathbf{r} \leftarrow D_{\sigma}^{m+d}$ (discrete Gaussian)

Hint-MLWE

Definition

- Hint-MLWE ${ }_{R, d, m, q, \sigma_{1}}^{\ell, \sigma_{2}, \mathcal{C}}$ Assumption:

$$
\begin{aligned}
& \left(\mathbf{A},[\mathbf{I} \mid \mathbf{A}] \mathbf{r}, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right) \\
& \quad \mathbf{c} \ell \\
& \left(\mathbf{A}, \mathbf{b} \quad, \gamma_{1} \cdot \mathbf{r}+\mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r}+\mathbf{y}_{2}, \ldots, \gamma_{\ell} \cdot \mathbf{r}+\mathbf{y}_{\ell}\right)
\end{aligned}
$$

for $\mathbf{A} \stackrel{s}{\leftarrow} R_{q}^{m \times d}, \mathbf{b} \stackrel{\$}{\gtrless} R_{q}^{m}, \mathbf{r} \stackrel{s}{\leftarrow} D_{\sigma_{1}}^{m+d}, \mathbf{y}_{i} \stackrel{s}{\leftrightarrows} D_{\sigma_{2}}^{m+d}$ (discrete Gaussian), and $\gamma_{i} \leftarrow \mathcal{C}$

- Generalized notion of Hint-LWE [CKK+18] and Multi-Hint Extended RLWE [BKMS22]
[CKK+18] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Joohee Lee, Junbum Shin, and Yongsoo Song. "Lattice-based secure biometric authentication for hamming distance." ACISP 2021.
[BKMS22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian. "Efficient lattice-based inner-product functional encryption." PKC 2022.

Hint-MLWE

Computational Hardness

Theorem: Let $\sigma, \sigma_{1}, \sigma_{2}>0$ be reals such that $\frac{1}{\sigma^{2}}=2\left(\frac{1}{\sigma_{1}^{2}}+\frac{B}{\sigma_{2}^{2}}\right)$ where $B:=\ell \cdot \max _{\gamma \leftarrow \mathcal{C}}\|\gamma\|_{1}^{2}$. If $\sigma \geq \eta_{\epsilon}\left(\mathbb{Z}^{n}\right)$, there exists poly-time reduction from $\operatorname{MLWE}_{R, d, m, q, \sigma}$ (o Hint-MLWE $\underset{R, d, m, q, \sigma_{1}}{\ell, \sigma_{2}, \boldsymbol{c}}$ with advantage loss $\leq(d+m) \cdot 2 \epsilon$.

Implication

- Hint-MLWE w/ width $\sigma_{1}=2 \sigma, \sigma_{2}=2 \sqrt{B} \sigma$ is harder than MLWE w/ width σ
- 1-bit larger size of secret $\mathbf{r} \quad\left(\sigma_{1}\right.$ v.s. σ)
- $\left\|\mathbf{y}_{i}\right\|_{2}=O\left(\sqrt{\ell} \cdot\left\|\gamma_{i} \cdot \mathbf{r}\right\|_{2}\right) \quad\left(\sigma_{2}\right.$ v.s. $\left.\sigma_{1}\right)$

Hint-MLWE

Computational Hardness

Theorem: Let $\sigma, \sigma_{1}, \sigma_{2}>0$ be reals such that $\frac{1}{\sigma^{2}}=2\left(\frac{1}{\sigma_{1}^{2}}+\frac{B}{\sigma_{2}^{2}}\right)$ where $B:=\ell \cdot \max _{\gamma \leftarrow C}\|\gamma\|_{1}^{2}$. If $\sigma \geq \eta_{\epsilon}\left(\mathbb{Z}^{n}\right)$, there exists poly-time reduction from MLWE $_{R, ~}{ }^{2}$. with advantage loss $\leq(d+m) \cdot 2 \epsilon$.

How to Prove?

- Reverse the point of view ©
- Analyze the "conditional distribution" of \mathbf{r} for given hints $\left(\gamma_{i} \cdot \mathbf{r}+\mathbf{y}_{i}\right)_{i}$
- Then, $[\mathbf{I} \mid \mathbf{A}] \mathbf{r}$ can be simulated "from" $\mathbf{A},\left(\gamma_{i} \cdot \mathbf{r}+\mathbf{y}_{i}\right)_{i}$, and given MLWE instance

Results

Comparison v.s. Previous Methods

Method	Type	Zero-Knowledge	Soundness slack				
Noise Flooding	Statistical Analysis	Message Randomness	$\left\\|\mathbf{z}_{i}\right\\|_{2}=O\left(2^{\lambda_{z k} / 2} \cdot\left\\|\gamma_{i} \cdot \mathbf{r}\right\\|_{2}\right)$				
Rejection Sampling	$\left\\|\mathbf{z}_{i}\right\\|_{2}=o\left(\sqrt{d n} \cdot\left\\|\gamma_{i} \cdot \mathbf{r}\right\\|_{2}\right)$						
Hint-MLWE	Cryptographic Assumption	Message	$\left\\|\mathbf{z}_{i}\right\\|_{2}=o\left(\sqrt{\ell} \cdot\left\\|\gamma_{i} \cdot \mathbf{r}\right\\|_{2}\right)$				

Results

Practicality: Application to various Lattice-based ZKPs

- Hint-MLWE framework is naturally applicable to various BDLOP-based proof systems:
- Proof of multiplicative relation [ALS20]
- Proof of knowledge for a (ternary) solution of linear system over \mathbb{Z}_{q} [ENS20]
- Smaller Parameters than previous results based on rejection sampling
- Please refer to the full version for more details: https://ia.cr/2023/623

