Toward Practical Lattice-based Proof of Knowledge from Hint-MLWE

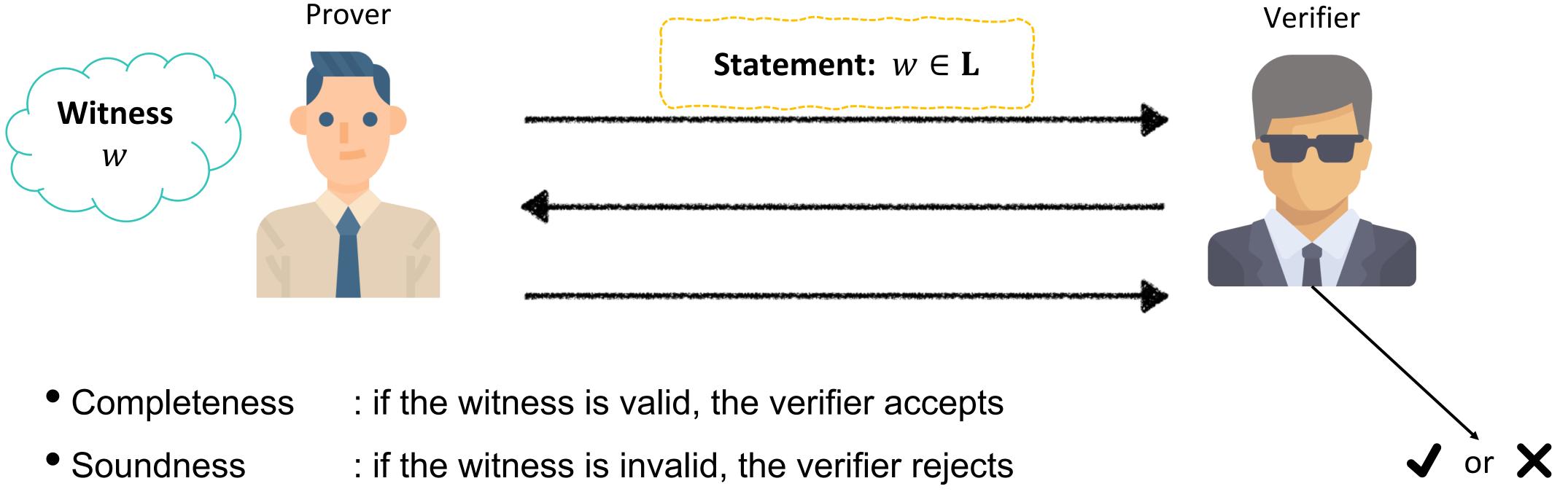
Duhyeong Kim Dongv Intel Labs

Inte

CRYPTO 2023 Aug 23, 2023

Dongwon Lee, Jinyeong Seo, Yongsoo Song Seoul National University

Proof of Knowledge (PoK)



- Zero-knowledge : the verifier does not learn anything about the witness
 - There exists a simulator that simulates the transcript

Lattice-based PoK for linear relation

- High-Level Description
 - Public: $\mathbf{B} \in R_q^{k \times \ell}$, $\mathbf{c} \in R_q^k$ for $k < \ell$ (*R*: polynomial ring)
 - We want to prove the knowledge of $\mathbf{r} \in R^{\ell}$ and $\mathbf{m} \in \mathcal{M}(\subset R_q^k)$ s.t.

 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$ and $\|\mathbf{r}\|_2 \leq \beta$.

Lattice-based PoK for linear relation

- BFV encryption
 - Parameters : Ciphertext modulus q, plaintext modulus $t \mid q$, error distribution χ .

Public key : $\mathbf{p} = (p_0, p_1)^T \in R_a^2$

The BFV ciphertext can also be expressed as

where $\mathbf{B} = [\mathbf{I}_2 | \mathbf{p}] \in R_q^{2 \times 3}$ and $\mathbf{m} = ((q/t) \cdot m, 0)^T$.

• **Proof of Plaintext Knowledge (PPK)** for BFV encryption:

To prove the knowledge of the message m and the encryption randomness r for given ciphertext c

[Bra12] Zvika Brakerski. "Fully homomorphic encryption without modulus switching from classical GapSVP", CRYPTO 2012. [FV12] Junfeng Fan and Frederik Vercauteren. "Somewhat practical fully homomorphic encryption", ePrint 2012/144.

Ciphertext : For a message $m \in R_t$, the encryption algorithm samples $\mathbf{r} = (r_0, r_1, r_2) \leftarrow \chi^3$ and return $\mathbf{c} = r_2 \cdot \mathbf{p} + (r_0 + (q/t) \cdot m, r_1)^T \pmod{q}$

 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$

Lattice-based PoK for linear relation

BDLOP commitment

- Parameters : Modulus q, error distribution χ .
- $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$
- Commitment key : $\mathbf{B} = \mathbf{R} \cdot [\mathbf{I}_k | \mathbf{A}] \in R_q^{k \times \ell}$ for $\mathbf{A} \in R_q^{k \times (k-\ell)}$ and invertible $\mathbf{R} \in R_q^{k \times k}$ Commitment : For a message $m \in R_q$, the commitment algorithm samples $\mathbf{r} \leftarrow \chi^{\ell}$ and return

where
$$\mathbf{m} = \begin{bmatrix} \mathbf{0} \\ m \end{bmatrix}$$
.

• Proof of Opening Knowledge (POK) for BDLOP commitment:

[BDLOP18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. "More efficient commitments from structured lattice assumptions", SCN 2018.

To prove the knowledge of the message m and the commitment randomness r for given commitment c

Zero-Knowledge "Overkill"

Conventional goal of Zero-knowledge:

Zero-knowledge w.r.t. **both** message **m** and randomness **r**

- Then, the natural question would be:
 - How about refining the goal of zero-knowledge as following?

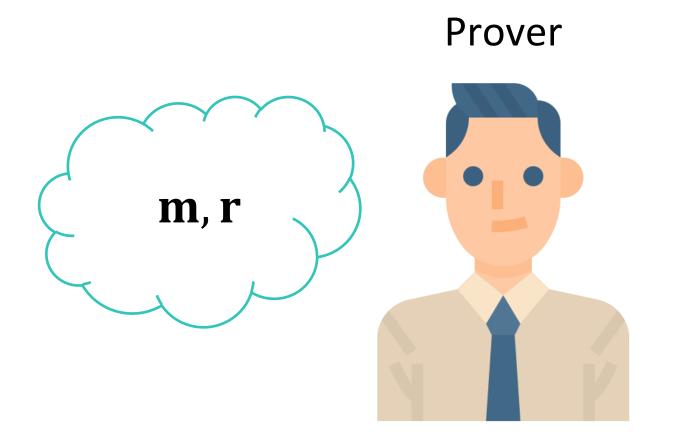
BUT! Zero-knowledge of randomness can be an overkill for many of PoK applications

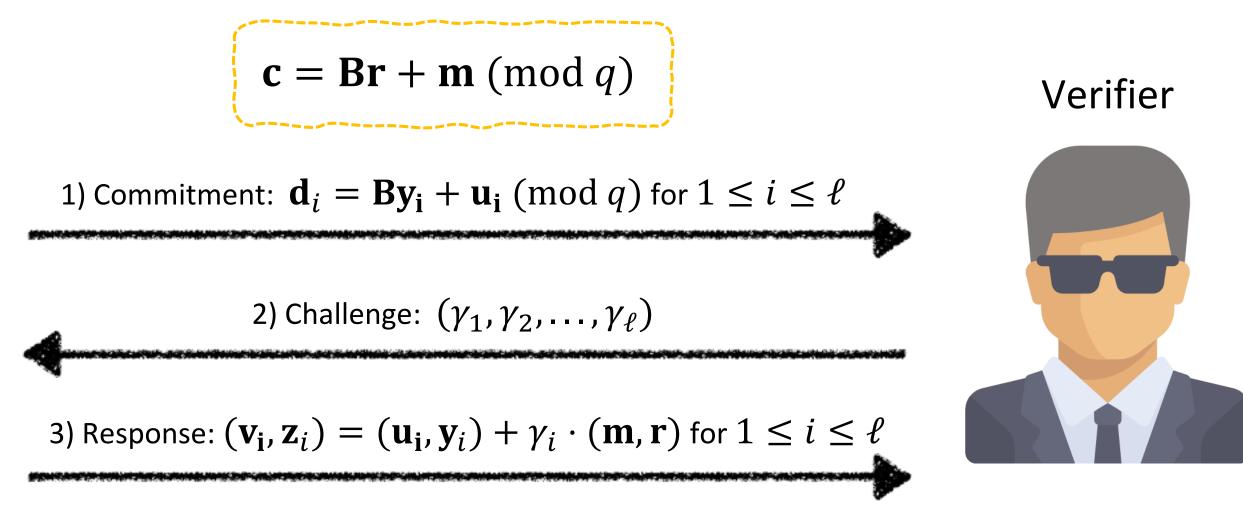
Zero-knowledge w.r.t. only message m

Can we still achieve zero-knowledge of m while allowing the leakage of r information?

Previous Approaches

• Σ-protocol Framework:





Generate random elements:

$$\mathbf{u}_i \leftarrow \mathcal{M}, \mathbf{y}_i \leftarrow D_{rnd}$$

for $1 \le i \le \ell$

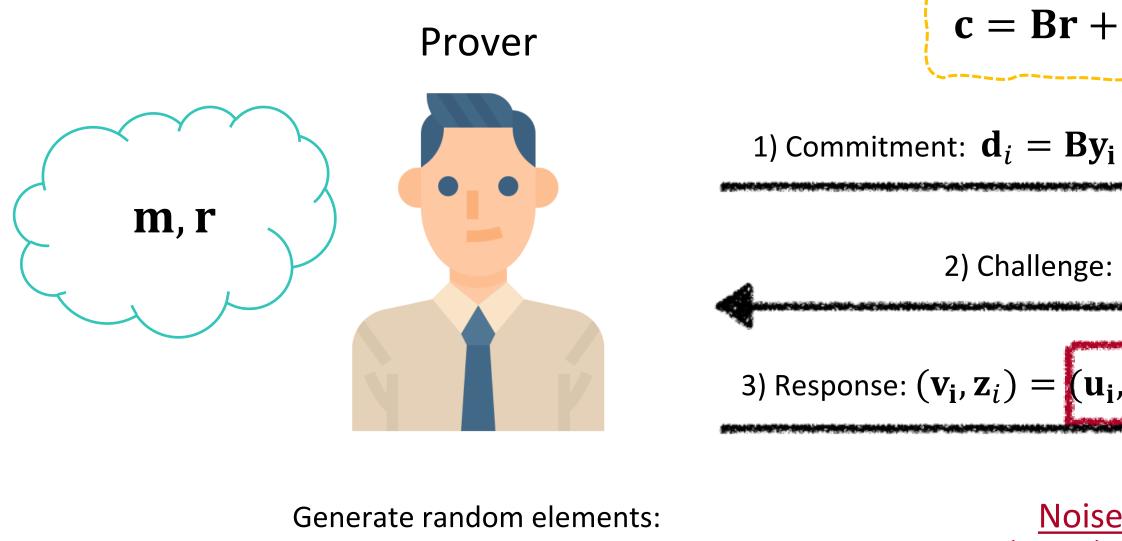
Generate random challenges: $\gamma_i \leftarrow \mathcal{C}$ for $1 \leq i \leq \ell$

4) Verification:

$$\begin{aligned} \mathbf{B}\mathbf{z}_{i} + \mathbf{v}_{i} \stackrel{?}{=} \mathbf{d}_{i} + \gamma_{i} \cdot \mathbf{c}, \\ \| \mathbf{z}_{i} \| \stackrel{?}{\leq} B, \\ \text{for } 1 \leq i \leq \ell \end{aligned}$$

Previous Approaches: Noise Flooding

• For the zero-knowledge proof, previous work adopted statistical methods.



$$\mathbf{u}_i \leftarrow \mathcal{M}, \mathbf{y}_i \leftarrow D_{rnd}$$

for $1 \le i \le \ell$

 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$

1) Commitment: $\mathbf{d}_i = \mathbf{B}\mathbf{y}_i + \mathbf{u}_i \pmod{q}$ for $1 \le i \le \ell$

2) Challenge: $(\gamma_1, \gamma_2, \dots, \gamma_\ell)$

3) Response: $(\mathbf{v_i}, \mathbf{z_i}) = (\mathbf{u_i}, \mathbf{y_i}) + \gamma_i \cdot (\mathbf{m}, \mathbf{r})$ for $1 \le i \le \ell$

Verifier

Noise Flooding Set $\|(\mathbf{u}_i, \mathbf{y}_i)\| \gg \|\gamma_i \cdot (\mathbf{m}, \mathbf{r})\|$ to make $(\mathbf{v}_i, \mathbf{z}_i)$ statistically independent to (\mathbf{m}, \mathbf{r})

Generate random challenges: $\gamma_i \leftarrow \mathcal{C} \text{ for } 1 \leq i \leq \ell$

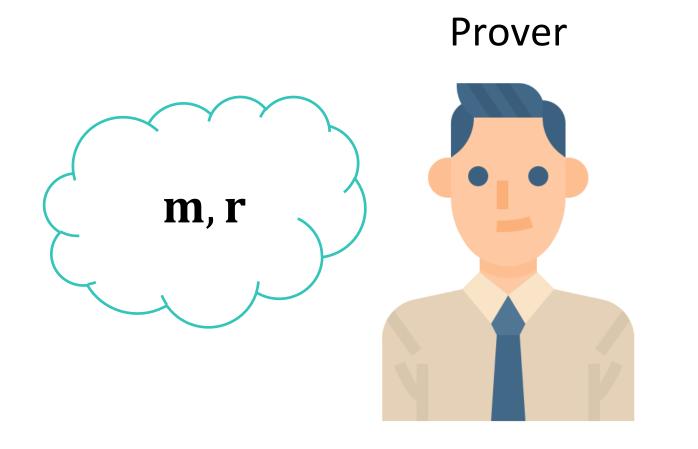
4) Verification:

$$\mathbf{B}\mathbf{z_i} + \mathbf{v_i} \stackrel{?}{=} \mathbf{d}_i + \gamma_i \cdot \mathbf{c}_i$$

$$\parallel \mathbf{z}_i \parallel \stackrel{?}{\leq} B,$$
for $1 \leq i \leq \ell$

Previous Approaches: Noise Flooding

• For the zero-knowledge proof, previous work adopted statistical methods.



Generate random elements: $\mathbf{u}_i \leftarrow \mathcal{M}, \mathbf{y}_i \leftarrow D_{rnd}$ for $1 \leq i \leq \ell$

Distribution-independent Solution \mathbf{V} **Exponential Overhead**

 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$

1) Commitment: $\mathbf{d}_i = \mathbf{B}\mathbf{y}_i + \mathbf{u}_i \pmod{q}$ for $1 \le i \le \ell$

2) Challenge: $(\gamma_1, \gamma_2, \dots, \gamma_\ell)$

3) Response: $(\mathbf{v_i}, \mathbf{z_i}) = (\mathbf{u_i}, \mathbf{y_i}) + \gamma_i \cdot (\mathbf{m}, \mathbf{r})$ for $1 \le i \le \ell$

Verifier

Noise Flooding Set $\|(\mathbf{u}_i, \mathbf{y}_i)\| \gg \|\gamma_i \cdot (\mathbf{m}, \mathbf{r})\|$ to make $(\mathbf{v}_i, \mathbf{z}_i)$ statistical independent to (\mathbf{m}, \mathbf{r}) Generate random challenges: $\gamma_i \leftarrow \mathcal{C}$ for $1 \leq i \leq \ell$

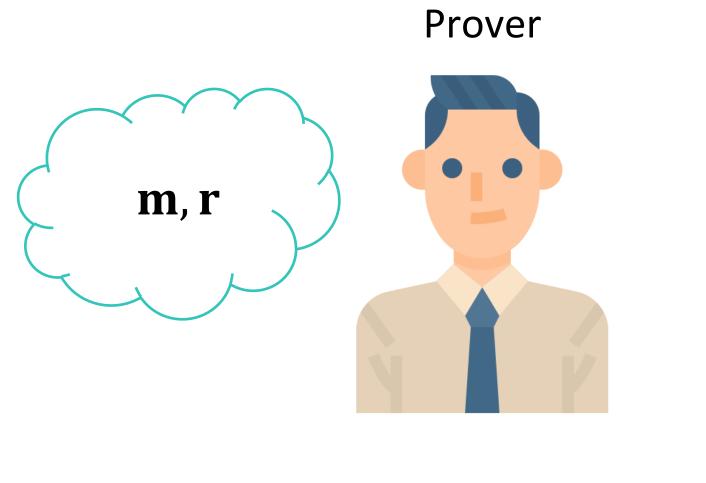
4) Verification:

$$\mathbf{B}\mathbf{z_i} + \mathbf{v_i} \stackrel{?}{=} \mathbf{d}_i + \gamma_i \cdot \mathbf{c}_i$$

$$\parallel \mathbf{z}_i \parallel \stackrel{?}{\leq} B,$$
for $1 \le i \le \ell$

Previous Approaches: Rejection Sampling

• For the zero-knowledge proof, previous work adopted statistical methods.



Generate random elements:

$$\mathbf{u}_i \leftarrow \mathcal{M}$$
 , $\mathbf{y}_i \leftarrow D_{rnd}$ for $1 \leq i \leq \ell$

Rejection Sampling Reject and re-run the steps with certain probability to make $(\mathbf{v}_i, \mathbf{z}_i)$ statistically independent to (\mathbf{m}, \mathbf{r})

 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$

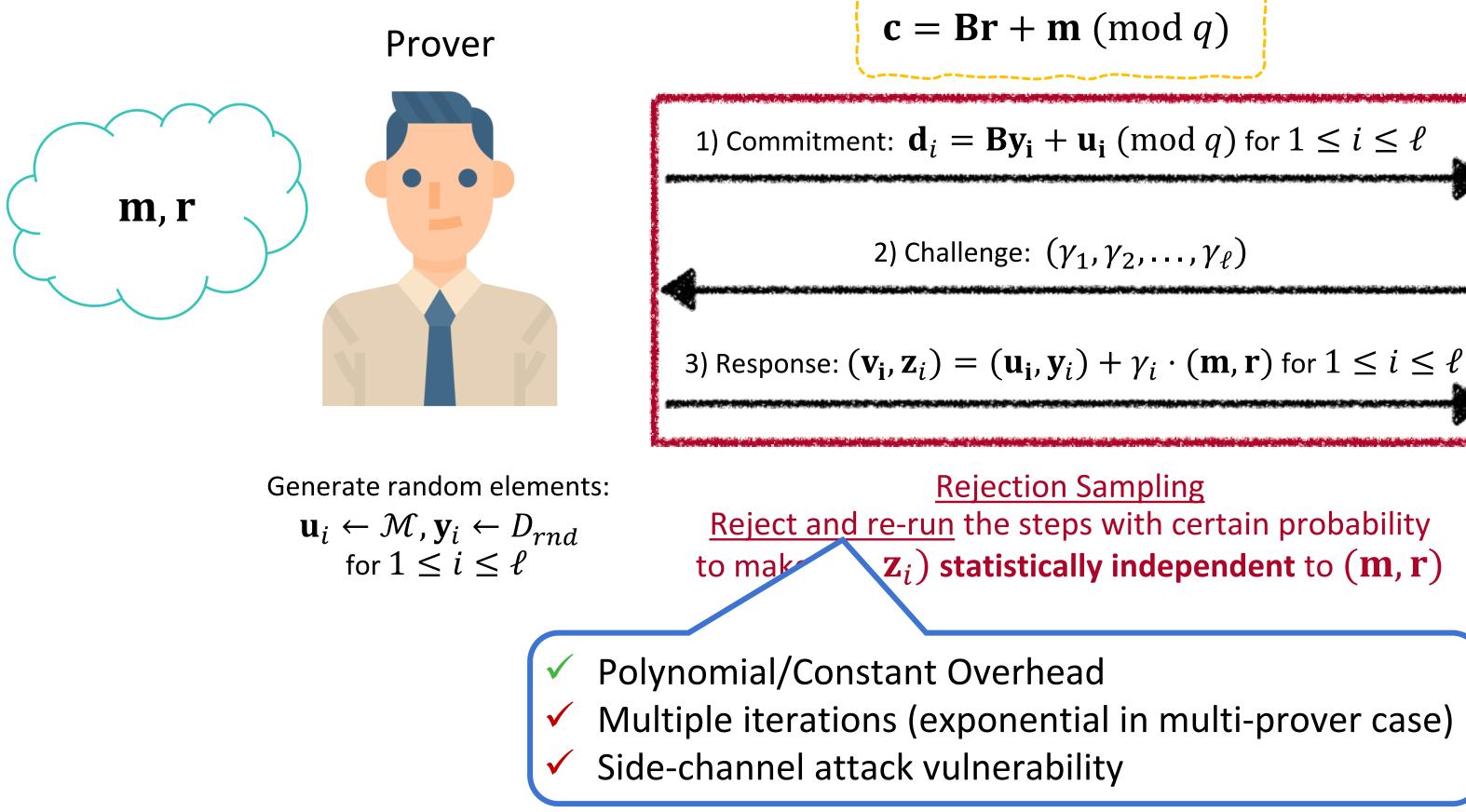
1) Commitment: $\mathbf{d}_i = \mathbf{B}\mathbf{y_i} + \mathbf{u_i} \pmod{q}$ for $1 \le i \le \ell$ 2) Challenge: $(\gamma_1, \gamma_2, \dots, \gamma_\ell)$ 3) Response: $(\mathbf{v_i}, \mathbf{z}_i) = (\mathbf{u_i}, \mathbf{y}_i) + \gamma_i \cdot (\mathbf{m}, \mathbf{r})$ for $1 \le i \le \ell$ Verifier

Generate random challenges: $\gamma_i \leftarrow \mathcal{C} \text{ for } 1 \leq i \leq \ell$

4) Verification: $\mathbf{B}\mathbf{z}_{\mathbf{i}} + \mathbf{v}_{\mathbf{i}} \stackrel{?}{=} \mathbf{d}_{i} + \gamma_{i} \cdot \mathbf{c},$ $\| \mathbf{z}_i \| \stackrel{?}{\leq} B,$ for $1 \leq i \leq \ell$

Previous Approaches: Rejection Sampling

• For the zero-knowledge proof, previous work adopted statistical methods.



 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$

1) Commitment: $\mathbf{d}_i = \mathbf{B}\mathbf{y}_i + \mathbf{u}_i \pmod{q}$ for $1 \le i \le \ell$ 2) Challenge: $(\gamma_1, \gamma_2, \dots, \gamma_\ell)$

3) Response: $(\mathbf{v_i}, \mathbf{z}_i) = (\mathbf{u_i}, \mathbf{y}_i) + \gamma_i \cdot (\mathbf{m}, \mathbf{r})$ for $1 \le i \le \ell$

Verifier

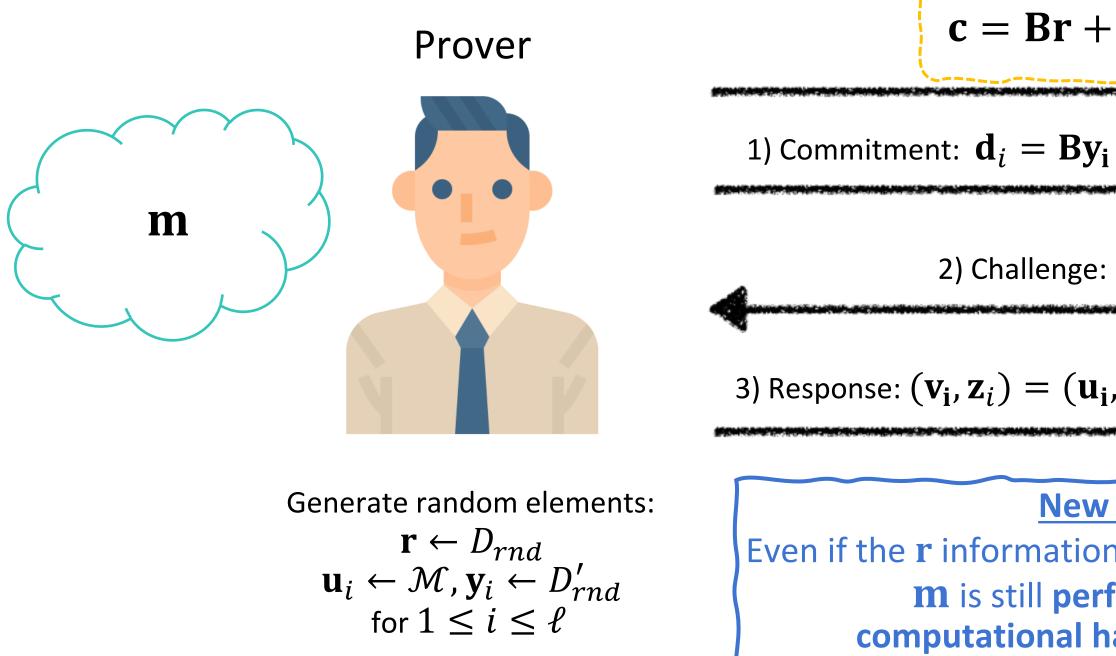
Rejection Sampling <u>Reject and re-run</u> the steps with certain probability \mathbf{z}_i) statistically independent to (\mathbf{m}, \mathbf{r})

Generate random challenges: $\gamma_i \leftarrow \mathcal{C}$ for $1 \leq i \leq \ell$

4) Verification:

$$\begin{aligned} \mathbf{B}\mathbf{z}_{i} + \mathbf{v}_{i} &\stackrel{?}{=} \mathbf{d}_{i} + \gamma_{i} \cdot \mathbf{c}, \\ \| \mathbf{z}_{i} \| \stackrel{?}{\leq} B, \\ \text{for } 1 \leq i \leq \ell \end{aligned}$$

New Framework



• "Refined" zero-knowledge proof based on computational hardness assumption!

 $\mathbf{c} = \mathbf{Br} + \mathbf{m} \pmod{q}$

1) Commitment: $\mathbf{d}_i = \mathbf{B}\mathbf{y}_i + \mathbf{u}_i \pmod{q}$ for $1 \le i \le \ell$

2) Challenge: $(\gamma_1, \gamma_2, \dots, \gamma_\ell)$

3) Response: $(\mathbf{v_i}, \mathbf{z_i}) = (\mathbf{u_i}, \mathbf{y_i}) + \gamma_i \cdot (\mathbf{m}, \mathbf{r})$ for $1 \le i \le \ell$

Verifier

New Approach

Even if the **r** information is partially leaked from \mathbf{z}_i 's, **m** is still **perfectly hided** under computational hardness assumption!

Generate random challenges: $\gamma_i \leftarrow \mathcal{C}$ for $1 \leq i \leq \ell$

4) Verification: $\mathbf{B}\mathbf{z}_{\mathbf{i}} + \mathbf{v}_{\mathbf{i}} \stackrel{?}{=} \mathbf{d}_{i} + \gamma_{i} \cdot \mathbf{c},$ $\| \mathbf{z}_i \| \stackrel{?}{\leq} B,$ for $1 \leq i \leq \ell$

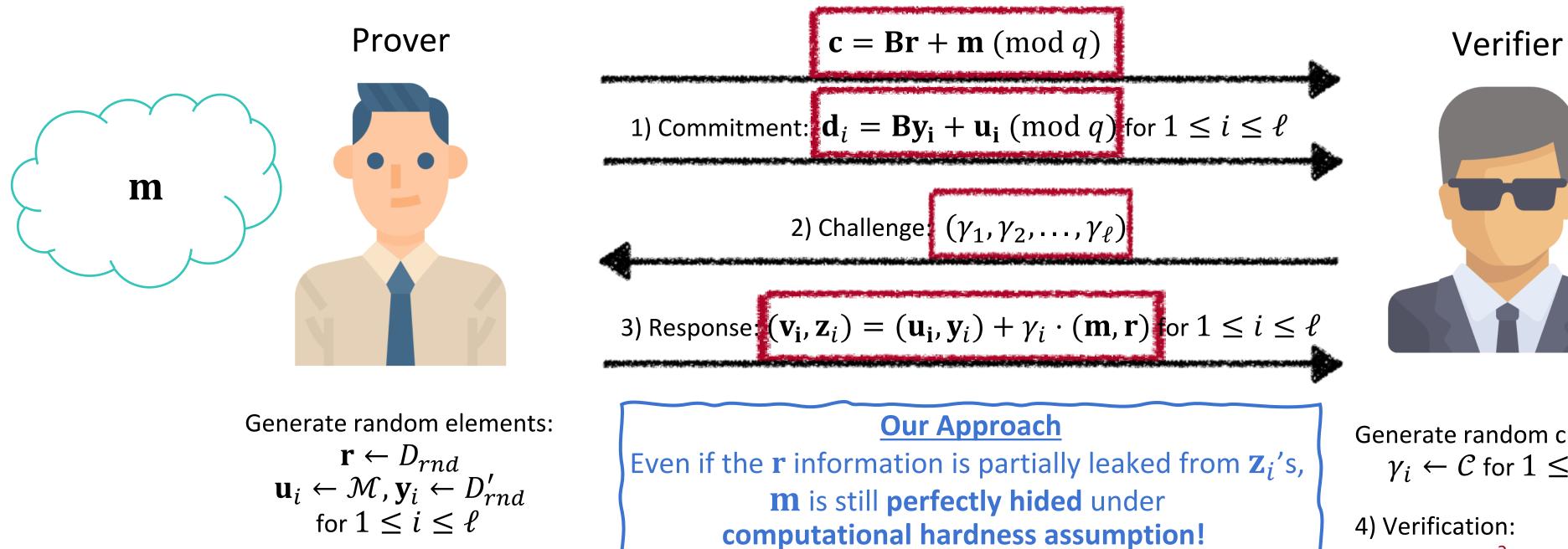
Our Work

Our Work

A New Framework on Lattice-based PoK with "refined" Zero-Knowledge

- We first propose secure lattice-based PoK protocols w/o noise flooding or rejection sampling
 - Zero-knowledge w.r.t. message holds under the "Hint-MLWE" assumption.
 - *v.s.* noise flooding : exponential \rightarrow **polynomial/constant** overhead
 - *v.s.* rejection sampling : $O(\sqrt{dim})$ smaller soundness slack, no repetition required
- Instantiation on the following primitives:
 - Proof of Plaintext Knowledge (PPK) for BFV encryption
 - Proof of Opening Knowledge (POK) for BDLOP commitment O Naturally extendable to various BDLOP-based ZKP applications
- **Tight Reduction** from **MLWE to Hint-MLWE** under discrete Gaussian setting \bigcirc LWE \rightarrow Hint-LWE & RLWE \rightarrow Hint-RLWE also hold

Zero-Knowledge w.r.t. Message



• Need to show the transcript $(c, (d_i, \gamma_i, v_i, z_i))$ is simulatable without the message m

Generate random challenges: $\gamma_i \leftarrow \mathcal{C}$ for $1 \leq i \leq \ell$

4) Verification: $\mathbf{B}\mathbf{z}_{\mathbf{i}} + \mathbf{v}_{\mathbf{i}} \stackrel{?}{=} \mathbf{d}_{i} + \gamma_{i} \cdot \mathbf{c},$ $\| \mathbf{z}_i \| \stackrel{?}{\leq} B,$ for $1 \leq i \leq \ell$

Zero-Knowledge w.r.t. Message

- **Observation 1:** Trivially-simulatable components of the transcript $(\mathbf{c}, (\mathbf{d}_i, \gamma_i, \mathbf{v}_i, \mathbf{z}_i))$: 1. d_i can be generated by the other components and the public key **B**
- - $\mathbf{d}_i = \mathbf{B}\mathbf{y}_i + \mathbf{u}_i = \mathbf{B}(\mathbf{z}_i \gamma_i \cdot \mathbf{r}) + (\mathbf{v}_i \gamma_i \cdot \mathbf{m})$
 - 2. \mathbf{v}_i is also trivially simulatable for each case as following:
 - PPK of BFV encryption : $\mathbf{v}_i = \mathbf{u}_i + \gamma_i \cdot \mathbf{m} \pmod{t}$ is uniform modulo t
 - POK of BDLOP commitment : $\mathbf{u}_i = \mathbf{0}$ & Do not send \mathbf{v}_i to the verifier
- Now, it suffices to simulate $(c, (z_i)_i)$ for public key B and challenges $(\gamma_1, \gamma_2, \dots, \gamma_\ell)$

$$\mathbf{n}) = \mathbf{B}\mathbf{z}_i + \mathbf{v}_i - \gamma_i \cdot \mathbf{c}$$

Zero-Knowledge w.r.t. Message

• Observation 2: The tuple $(\mathbf{B}, \mathbf{c}, \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_\ell)$ can be expressed as

• Since $\mathbf{B} = \mathbf{R} \cdot [\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R} , it is equivalent to simulate

 $(\mathbf{B}, \mathbf{Br} + \mathbf{m}, \gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell)$

 $(\mathbf{A}, [\mathbf{I} | \mathbf{A}]\mathbf{r} + \mathbf{R}^{-1} \cdot \mathbf{m}, \gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_{\ell} \cdot \mathbf{r} + \mathbf{y}_{\ell})$

Zero-Knowledge w.r.t. Message

• Observation 2: The tuple $(\mathbf{B}, \mathbf{c}, \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_\ell)$ can be expressed as

• Since $\mathbf{B} = \mathbf{R} \cdot [\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R} , it is equivalent to simulate

$$(\mathbf{A}, [\mathbf{I} | \mathbf{A}]\mathbf{r} + \mathbf{R}^{-1} \cdot \mathbf{m})$$

MLWE Instance over the secret **r**

 $(\mathbf{B}, \mathbf{Br} + \mathbf{m}, \gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell)$

 $\gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell$

Hints on the secret r

Zero-Knowledge w.r.t. Message

• Observation 2: The tuple $(\mathbf{B}, \mathbf{c}, \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_\ell)$ can be expressed as

• Since $\mathbf{B} = \mathbf{R} \cdot [\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix **R**, it is equivalent to simulate

 $(\mathbf{A}, [\mathbf{I} | \mathbf{A}]\mathbf{r} + \mathbf{R}^{-1} \cdot \mathbf{m}, \gamma)$

 $(\mathbf{B}, \mathbf{Br} + \mathbf{m}, \gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell)$

(A,
$$[\mathbf{I} | \mathbf{A}]\mathbf{r} + \mathbf{R}^{-1} \cdot \mathbf{m}, \gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell)$$

? ?
(A, uniform , $\gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell)$

Zero-Knowledge w.r.t. Message

• Observation 2: The tuple $(\mathbf{B}, \mathbf{c}, \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_\ell)$ can be expressed as

• Since $\mathbf{B} = \mathbf{R} \cdot [\mathbf{I} \mid \mathbf{A}]$ for a public invertible matrix \mathbf{R} , it is equivalent to simulate

 $(\mathbf{A}, [\mathbf{I} | \mathbf{A}]\mathbf{r} + \mathbf{R}^{-1} \cdot \mathbf{m}, \gamma)$

uniform , γ (**A**,

 $(\mathbf{B}, \mathbf{Br} + \mathbf{m}, \gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_\ell \cdot \mathbf{r} + \mathbf{y}_\ell)$

$$y_{1} \cdot \mathbf{r} + \mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r} + \mathbf{y}_{2}, \dots, \gamma_{\ell} \cdot \mathbf{r} + \mathbf{y}_{\ell})$$
? ?
$$y_{1} \cdot \mathbf{r} + \mathbf{y}_{1}, \gamma_{2} \cdot \mathbf{r} + \mathbf{y}_{2}, \dots, \gamma_{\ell} \cdot \mathbf{r} + \mathbf{y}_{\ell})$$
Simulatable!

Definition

MLWE_{R,d,m,q,σ} Assumption: (A, [I |A]r) c ζ (A, b)

for $\mathbf{A} \stackrel{\$}{\leftarrow} R_q^{m \times d}$, $\mathbf{b} \stackrel{\$}{\leftarrow} R_q^m$, $\mathbf{r} \stackrel{\$}{\leftarrow} D_{\sigma}^{m+d}$ (discrete Gaussian)

[LS15] Adeline Langlois, and Damien Stehlé. "Worst-case to average-case reductions for module lattices." Designs, Codes and Cryptography, 2015.

Definition

• Hint-MLWE $_{R,d,m,q,\sigma_1}^{\ell,\sigma_2,\mathcal{C}}$ Assumption: c **/**

for $\mathbf{A} \stackrel{\$}{\leftarrow} R_a^{m \times d}$, $\mathbf{b} \stackrel{\$}{\leftarrow} R_a^m$, $\mathbf{r} \stackrel{\$}{\leftarrow} D_{\sigma_1}^{m+d}$, $\mathbf{y}_i \stackrel{\$}{\leftarrow} D_{\sigma_2}^{m+d}$ (discrete Gaussian), and $\gamma_i \leftarrow \mathcal{C}$

Generalized notion of Hint-LWE [CKK+18] and Multi-Hint Extended RLWE [BKMS22]

[CKK+18] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Joohee Lee, Junbum Shin, and Yongsoo Song. "Lattice-based secure biometric authentication for hamming distance." ACISP 2021. [BKMS22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian. "Efficient lattice-based inner-product functional encryption."

PKC 2022.

(A, |I|A|r, $\gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_{\ell} \cdot \mathbf{r} + \mathbf{y}_{\ell}$)

(A, **b** , $\gamma_1 \cdot \mathbf{r} + \mathbf{y}_1, \gamma_2 \cdot \mathbf{r} + \mathbf{y}_2, \dots, \gamma_{\ell} \cdot \mathbf{r} + \mathbf{y}_{\ell}$)

Computational Hardness

with advantage loss $\leq (d + m) \cdot 2\epsilon$.

Implication

- Hint-MLWE w/ width $\sigma_1 = 2\sigma$, $\sigma_2 = 2\sqrt{B}\sigma$ is harder than MLWE w/ width σ • 1-bit larger size of secret r (σ_1 v.s. σ)

 - $\|\mathbf{y}_i\|_2 = O(\sqrt{\ell} \cdot \|\boldsymbol{\gamma}_i \cdot \mathbf{r}\|_2)$ $(\sigma_2 \text{ v.s. } \sigma_1)$

Theorem: Let $\sigma, \sigma_1, \sigma_2 > 0$ be reals such that $\frac{1}{\sigma^2} = 2\left(\frac{1}{\sigma_1^2} + \frac{B}{\sigma_2^2}\right)$ where $B \coloneqq \ell \cdot \max_{\gamma \leftarrow \mathcal{C}} \|\gamma\|_1^2$. If $\sigma \ge \eta_{\epsilon}(\mathbb{Z}^n)$, there exists poly-time reduction from $\text{MLWE}_{R,d,m,q,\sigma}$ to $\text{Hint-MLWE}_{R,d,m,q,\sigma_1}^{\ell,\sigma_2,\mathcal{C}}$

Computational Hardness

with advantage loss $\leq (d + m) \cdot 2\epsilon$.

How to Prove?

- Reverse the point of view ③
- Analyze the "conditional distribution" of r for given hints $(\gamma_i \cdot \mathbf{r} + \mathbf{y}_i)_i$
- Then, [I | A]r can be simulated "from" A, $(\gamma_i \cdot r + y_i)_i$, and given MLWE instance

Theorem: Let $\sigma, \sigma_1, \sigma_2 > 0$ be reals such that $\frac{1}{\sigma^2} = 2\left(\frac{1}{\sigma_1^2} + \frac{B}{\sigma_2^2}\right)$ where $B \coloneqq \ell \cdot \max_{\gamma \leftarrow \mathcal{C}} \|\gamma\|_1^2$. If $\sigma \ge \eta_{\epsilon}(\mathbb{Z}^n)$, there exists poly-time reduction from $\text{MLWE}_{R,d,m,q,\sigma}$ to $\text{Hint-MLWE}_{R,d,m,q,\sigma_1}^{\ell,\sigma_2,\mathcal{C}}$

Comparison v.s. Previous Methods

Method	Туре	Zero-Knowledge	Soundness slack
Noise Flooding	Statistical Analysis	Message & Randomness	$\ \mathbf{z}_i\ _2 = O(2^{\lambda_{zk}/2} \cdot \ \gamma_i \cdot \mathbf{r}\ _2)$
Rejection Sampling			$\ \mathbf{z}_i\ _2 = O(\sqrt{dn} \cdot \ \boldsymbol{\gamma}_i \cdot \mathbf{r}\ _2)$
Hint-MLWE	Cryptographic Assumption	Message	$\ \mathbf{z}_i\ _2 = O(\sqrt{\ell} \cdot \ \gamma_i \cdot \mathbf{r}\ _2)$
			The slack is "independent" to dimension

Results

Practicality: Application to various Lattice-based ZKPs

- Proof of multiplicative relation [ALS20]
 - Proof of knowledge for a (ternary) solution of linear system over \mathbb{Z}_a [ENS20]
- Smaller Parameters than previous results based on rejection sampling
- Please refer to the full version for more details: https://ia.cr/2023/623

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. "Practical product proofs for lattice commitments", CRYPTO 2020. [ENS20] Muhammed F. Esgin, Ngoc K. Nguyen, and Gregor Seiler. "Practical exact proofs from lattices: New techniques to exploit fully-splitting rings." ASIACRYPT 2020.

• Hint-MLWE framework is naturally applicable to various BDLOP-based proof systems:

