
Duhyeong Kim   Dongwon Lee, Jinyeong Seo, Yongsoo Song
           Intel Labs                              Seoul National University   

Toward Practical Lattice-based Proof of Knowledge 
from Hint-MLWE

CRYPTO 2023
Aug 23, 2023



Background



Background

Proof of Knowledge (PoK)

Prover Verifier

Statement:  𝑤 ∈ 𝐋

Witness
𝑤

✔️  or  ❌

• Completeness      : if the witness is valid, the verifier accepts

• Soundness           : if the witness is invalid, the verifier rejects

• Zero-knowledge : the verifier does not learn anything about the witness

▪ There exists a simulator that simulates the transcript



Background

Lattice-based PoK for linear relation

•  High-Level Description

▪ Public: 𝐁 ∈ 𝑅𝑞
𝑘×ℓ, 𝐜 ∈ 𝑅𝑞

𝑘   for 𝑘 < ℓ   (𝑅: polynomial ring)

▪ We want to prove the knowledge of 𝐫 ∈ 𝑅ℓ and 𝐦 ∈ ℳ ⊂ 𝑅𝑞
𝑘   s.t.

𝐜 = 𝐁𝐫 + 𝐦 mod 𝑞    and   𝐫 2 ≤ 𝛽.



Background

Lattice-based PoK for linear relation

• BFV encryption

▪Parameters : Ciphertext modulus 𝑞, plaintext modulus  𝑡 ∣ 𝑞,  error distribution 𝜒.

▪Public key   : 𝐩 = 𝑝0, 𝑝1
𝑇 ∈ 𝑅𝑞

2

▪Ciphertext   : For a message 𝑚 ∈ 𝑅𝑡, the encryption algorithm samples 𝐫 = 𝑟0, 𝑟1, 𝑟2 ← 𝜒3 and return

𝐜 = 𝑟2 ⋅ 𝐩 + 𝑟0 + Τ𝑞 𝑡 ⋅  𝑚, 𝑟1

𝑇
 (mod 𝑞)

▪The BFV ciphertext can also be expressed as  

𝐜 = 𝐁𝐫 + 𝐦 mod 𝑞

where  𝐁 = 𝐈𝟐 𝐩 ∈ 𝑅𝑞
2×3  and 𝐦 = 𝑞/𝑡 ⋅ 𝑚, 0

𝑇
.

• Proof of Plaintext Knowledge (PPK) for BFV encryption: 

To prove the knowledge of the message 𝐦 and the encryption randomness 𝐫 for given ciphertext 𝐜

[Bra12] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from classical GapSVP”, CRYPTO 2012.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic encryption”,  ePrint 2012/144. 



Background

Lattice-based PoK for linear relation

• BDLOP commitment

▪ Parameters         : Modulus 𝑞, error distribution 𝜒.

▪ Commitment key :  𝐁 = 𝐑 ⋅ 𝐈𝑘 𝐀 ∈ 𝑅𝑞
𝑘×ℓ for 𝐀 ∈ 𝑅𝑞

𝑘×(𝑘−ℓ)
 and invertible 𝐑 ∈ 𝑅𝑞

𝑘×𝑘 

▪ Commitment :  For a message 𝑚 ∈ 𝑅𝑞,  the commitment algorithm samples 𝐫 ← 𝜒ℓ and return

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

where  𝐦 =
𝟎
𝑚

.

• Proof of Opening Knowledge (POK) for BDLOP commitment: 

To prove the knowledge of the message 𝐦 and the commitment randomness 𝐫 for given commitment 𝐜

[BDLOP18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. "More efficient commitments from structured lattice 

assumptions“, SCN 2018.



Motivation



Motivation

Zero-Knowledge “Overkill”

• Conventional goal of Zero-knowledge:

Zero-knowledge w.r.t. both message 𝐦 and randomness 𝐫

• BUT! Zero-knowledge of randomness can be an overkill for many of PoK applications

• Then, the natural question would be: 

▪ How about refining the goal of zero-knowledge as following?

Zero-knowledge w.r.t. only message 𝐦

▪ Can we still achieve zero-knowledge of 𝐦 while allowing the leakage of 𝐫 information? 



Motivation

• Σ-protocol Framework: 

Previous Approaches

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑
for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

𝐦, 𝐫



Motivation

• For the zero-knowledge proof, previous work adopted statistical methods.

Previous Approaches: Noise Flooding

Noise Flooding 
Set ‖ 𝐮𝑖 , 𝐲𝑖 ‖  ≫ ‖𝛾𝑖 ⋅ (𝐦, 𝐫)‖

to make (𝐯𝑖 , 𝐳𝑖) statistically independent to (𝐦, 𝐫)

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑
for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

𝐦, 𝐫



Motivation

• For the zero-knowledge proof, previous work adopted statistical methods.

Previous Approaches: Noise Flooding

Noise Flooding 
Set ‖ 𝐮𝑖 , 𝐲𝑖 ‖  ≫ ‖𝛾𝑖 ⋅ (𝐦, 𝐫)‖

to make (𝐯𝑖 , 𝐳𝑖) statistically independent to (𝐦, 𝐫)

✓  Distribution-independent Solution
✓  Exponential Overhead

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑
for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

𝐦, 𝐫



Motivation

• For the zero-knowledge proof, previous work adopted statistical methods.

Previous Approaches: Rejection Sampling

Rejection Sampling
Reject and re-run the steps with certain probability

to make (𝐯𝑖 , 𝐳𝑖) statistically independent to (𝐦, 𝐫) 

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑
for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

𝐦, 𝐫



Motivation

• For the zero-knowledge proof, previous work adopted statistical methods.

Previous Approaches: Rejection Sampling

Rejection Sampling
Reject and re-run the steps with certain probability

to make (𝐯𝑖 , 𝐳𝑖) statistically independent to (𝐦, 𝐫) 

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑
for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

✓  Polynomial/Constant Overhead 
✓  Multiple iterations (exponential in multi-prover case)
✓  Side-channel attack vulnerability

𝐦, 𝐫



Motivation

• “Refined” zero-knowledge proof based on computational hardness assumption! 

New Framework

New Approach
Even if the 𝐫 information is partially leaked from 𝐳𝑖’s, 

𝐦 is still perfectly hided under 
computational hardness assumption!  

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐫 ← 𝐷𝑟𝑛𝑑
𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑

′

for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

𝐦



Our Work



Our Work

• We first propose secure lattice-based PoK protocols w/o noise flooding or rejection sampling

▪ Zero-knowledge w.r.t. message holds under the “Hint-MLWE” assumption.

▪ v.s. noise flooding        : exponential → polynomial/constant overhead

▪ v.s. rejection sampling : 𝑶 𝒅𝒊𝒎  smaller soundness slack, no repetition required 

• Instantiation on the following primitives:

▪ Proof of Plaintext Knowledge (PPK) for BFV encryption

▪ Proof of Opening Knowledge (POK) for BDLOP commitment

o Naturally extendable to various BDLOP-based ZKP applications

• Tight Reduction from MLWE to Hint-MLWE under discrete Gaussian setting

o LWE→Hint-LWE & RLWE→Hint-RLWE also hold 

A New Framework on Lattice-based PoK with “refined” Zero-Knowledge



Proof Sketch

• Need to show the transcript (𝐜, 𝐝𝑖 , 𝛾𝑖 , 𝐯𝑖 , 𝐳𝑖 i) is simulatable without the message 𝐦

Zero-Knowledge w.r.t. Message

Prover Verifier

?

?

1) Commitment:  𝐝𝑖 = 𝐁𝐲𝐢 + 𝐮𝐢 (mod 𝑞) for 1 ≤ 𝑖 ≤ ℓ

Generate random elements:

𝐫 ← 𝐷𝑟𝑛𝑑
𝐮𝑖 ← ℳ, 𝐲𝑖 ← 𝐷𝑟𝑛𝑑

′

for 1 ≤ 𝑖 ≤ ℓ 

2) Challenge:  (𝛾1, 𝛾2, . . . , 𝛾ℓ)

3) Response: (𝐯𝐢, 𝐳𝑖) = (𝐮𝐢, 𝐲𝑖) + 𝛾𝑖 ⋅ (𝐦, 𝐫) for 1 ≤ 𝑖 ≤ ℓ

Generate random challenges:
𝛾𝑖 ← 𝒞 for 1 ≤ 𝑖 ≤ ℓ

4) Verification:

𝐁𝐳𝐢 + 𝐯𝐢 = 𝐝𝑖 + 𝛾𝑖 ⋅ 𝐜,

∥ 𝐳𝑖 ∥< 𝐵,

for 1 ≤ 𝑖 ≤ ℓ

𝐜 = 𝐁𝐫 + 𝐦 (mod 𝑞)

Our Approach
Even if the 𝐫 information is partially leaked from 𝐳𝑖’s, 

𝐦 is still perfectly hided under 
computational hardness assumption!  

𝐦



Proof Sketch

• Observation 1: Trivially-simulatable components of the transcript (𝐜, 𝐝𝑖 , 𝛾𝑖 , 𝐯𝑖 , 𝐳𝑖 i): 

1.  𝐝𝑖 can be generated by the other components and the public key 𝐁

- 𝐝𝒊 = 𝐁𝐲𝑖 + 𝐮𝑖 = 𝐁 𝐳𝑖 − 𝛾𝑖 ⋅ 𝐫 + (𝐯𝑖 − 𝛾𝑖 ⋅ 𝐦) = 𝐁𝐳𝑖 + 𝐯𝑖 − 𝛾𝑖 ⋅ 𝐜

2.  𝐯𝑖 is also trivially simulatable for each case as following:

- PPK of BFV encryption          : 𝐯𝑖 = 𝐮𝑖 + 𝛾𝑖 ⋅ 𝐦 (mod 𝑡) is uniform modulo 𝑡

- POK of BDLOP commitment  : 𝐮𝑖 = 𝟎 & Do not send 𝐯𝑖 to the verifier

• Now, it suffices to simulate (𝐜, 𝐳𝒊 𝒊) for public key 𝐁 and challenges (𝛾1, 𝛾2, … , 𝛾ℓ)

Zero-Knowledge w.r.t. Message



• Observation 2: The tuple (𝐁, 𝐜, 𝐳1, 𝐳2, … , 𝐳ℓ) can be expressed as

(𝐁, 𝐁𝐫 + 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

• Since 𝐁 = 𝐑 ⋅ 𝐈 𝐀] for a public invertible matrix 𝐑, it is equivalent to simulate 

𝐀, 𝐈 𝐀 𝐫 + 𝐑−𝟏 ⋅ 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

Proof Sketch

Zero-Knowledge w.r.t. Message



• Observation 2: The tuple (𝐁, 𝐜, 𝐳1, 𝐳2, … , 𝐳ℓ) can be expressed as

(𝐁, 𝐁𝐫 + 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

• Since 𝐁 = 𝐑 ⋅ 𝐈 𝐀] for a public invertible matrix 𝐑, it is equivalent to simulate 

𝐀, 𝐈 𝐀 𝐫 + 𝐑−𝟏 ⋅ 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

Proof Sketch

Zero-Knowledge w.r.t. Message

MLWE Instance 
over the secret 𝐫

Hints on the secret 𝐫



• Observation 2: The tuple (𝐁, 𝐜, 𝐳1, 𝐳2, … , 𝐳ℓ) can be expressed as

(𝐁, 𝐁𝐫 + 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

• Since 𝐁 = 𝐑 ⋅ 𝐈 𝐀] for a public invertible matrix 𝐑, it is equivalent to simulate 

𝐀, 𝐈 𝐀 𝐫 + 𝐑−𝟏 ⋅ 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

(𝐀, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 , 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

Proof Sketch

Zero-Knowledge w.r.t. Message

?



• Observation 2: The tuple (𝐁, 𝐜, 𝐳1, 𝐳2, … , 𝐳ℓ) can be expressed as

(𝐁, 𝐁𝐫 + 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

• Since 𝐁 = 𝐑 ⋅ 𝐈 𝐀] for a public invertible matrix 𝐑, it is equivalent to simulate 

𝐀, 𝐈 𝐀 𝐫 + 𝐑−𝟏 ⋅ 𝐦, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

(𝐀, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 , 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

Proof Sketch

Zero-Knowledge w.r.t. Message

Simulatable!

?



Hint-MLWE

Definition

• MLWE𝑅,𝑑,𝑚,𝑞,𝜎 Assumption:

𝐀, 𝐈 𝐀 𝐫) 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

 (𝐀,    𝐛    ) 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

for 𝐀 ← 𝑅𝑞
𝑚×𝑑 , 𝐛 ← 𝑅𝑞

𝑚, 𝐫 ← 𝐷𝜎
𝑚+𝑑 (discrete Gaussian)

~c~c

$ $ $

[LS15] Adeline Langlois, and Damien Stehlé. "Worst-case to average-case reductions for module lattices." Designs, Codes and Cryptography, 2015.



• Hint-MLWE𝑅,𝑑,𝑚,𝑞,𝜎1

ℓ,𝜎2,𝒞
Assumption:

𝐀, 𝐈 𝐀 𝐫, 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

(𝐀,    𝐛    , 𝛾1 ⋅ 𝐫 + 𝐲1, 𝛾2 ⋅ 𝐫 + 𝐲2, … , 𝛾ℓ ⋅ 𝐫 + 𝐲ℓ)

for 𝐀 ← 𝑅𝑞
𝑚×𝑑 , 𝐛 ← 𝑅𝑞

𝑚, 𝐫 ← 𝐷𝜎1
𝑚+𝑑 , 𝐲𝑖 ← 𝐷𝜎2

𝑚+𝑑 (discrete Gaussian), and 𝛾𝑖 ← 𝒞

• Generalized notion of Hint-LWE [CKK+18] and Multi-Hint Extended RLWE [BKMS22]

Hint-MLWE

Definition

$ $ $ $

~c

[CKK+18] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Joohee Lee, Junbum Shin, and Yongsoo Song. "Lattice-based secure biometric authentication for 
hamming distance." ACISP 2021.

[BKMS22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian. "Efficient lattice-based inner-product functional encryption." 
PKC 2022.



Hint-MLWE

Computational Hardness

Theorem: Let 𝜎, 𝜎1, 𝜎2 > 0 be reals such that  
1

𝜎2 = 2
1

𝜎1
2 +

𝐵

𝜎2
2  where 𝐵 ≔ ℓ ⋅ max

𝛾←𝒞
𝛾 1

2. 

If 𝜎 ≥ 𝜂𝜖(ℤ𝑛), there exists poly-time reduction from MLWE𝑹,𝒅,𝒎,𝒒,𝝈 to Hint-MLWE𝑹,𝒅,𝒎,𝒒,𝝈𝟏

ℓ,𝝈𝟐,𝓒
 

with advantage loss ≤ 𝑑 + 𝑚 ⋅ 2𝜖.

Implication

• Hint-MLWE w/ width 𝝈𝟏 = 𝟐𝝈, 𝝈𝟐 = 𝟐 𝑩𝝈 is harder than MLWE w/ width 𝝈

•  1-bit larger size of secret 𝐫    (𝜎1 v.s. 𝜎)

• 𝐲𝑖 2 = 𝑂 ℓ ⋅ 𝛾𝑖 ⋅ 𝐫 2      (𝜎2 v.s. 𝜎1)



Hint-MLWE

Computational Hardness

Theorem: Let 𝜎, 𝜎1, 𝜎2 > 0 be reals such that  
1

𝜎2 = 2
1

𝜎1
2 +

𝐵

𝜎2
2  where 𝐵 ≔ ℓ ⋅ max

𝛾←𝒞
𝛾 1

2. 

If 𝜎 ≥ 𝜂𝜖(ℤ𝑛), there exists poly-time reduction from MLWE𝑹,𝒅,𝒎,𝒒,𝝈 to Hint-MLWE𝑹,𝒅,𝒎,𝒒,𝝈𝟏

ℓ,𝝈𝟐,𝓒
 

with advantage loss ≤ 𝑑 + 𝑚 ⋅ 2𝜖.

How to Prove?

• Reverse the point of view ☺

• Analyze the “conditional distribution” of 𝐫 for given hints 𝛾𝑖 ⋅ 𝐫 + 𝐲𝑖 𝑖

• Then, 𝐈 𝐀]𝐫 can be simulated “from” 𝐀, 𝛾𝑖 ⋅ 𝐫 + 𝐲𝑖 𝑖, and given MLWE instance



Results

Comparison v.s. Previous Methods

Method Type Zero-Knowledge Soundness slack

Noise Flooding
Statistical
Analysis

Message
&

Randomness

𝐳𝑖 2 = 𝑂 2 Τ𝜆𝑧𝑘 2 ⋅ 𝛾𝑖 ⋅ 𝐫 2  

Rejection 
Sampling

𝐳𝑖 2 = 𝑂 𝑑𝑛 ⋅ 𝛾𝑖 ⋅ 𝐫 2  

Hint-MLWE
Cryptographic
Assumption

Message 𝐳𝑖 2 = 𝑂 ℓ ⋅ 𝛾𝑖 ⋅ 𝐫 2  

The slack is “independent” 
to dimension



Results

Practicality: Application to various Lattice-based ZKPs

• Hint-MLWE framework is naturally applicable to various BDLOP-based proof systems:

▪ Proof of multiplicative relation [ALS20]

▪ Proof of knowledge for a (ternary) solution of linear system over ℤ𝑞 [ENS20] 

• Smaller Parameters than previous results based on rejection sampling

• Please refer to the full version for more details: https://ia.cr/2023/623

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. "Practical product proofs for lattice commitments“, CRYPTO 2020.

[ENS20] Muhammed F. Esgin, Ngoc K. Nguyen, and Gregor Seiler. "Practical exact proofs from lattices: New techniques to exploit fully-splitting rings.” 
ASIACRYPT 2020.

https://ia.cr/2023/623
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