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Background

Proof of Knowledge (PoK)

Prover

H Statement: w € L

Withess o o
w

® Completeness :if the witness is valid, the verifier accepts
® Soundness . If the witness is invalid, the verifier rejects
®* Zero-knowledge : the verifier does not learn anything about the witness

® There exists a simulator that simulates the transcript

Verifier




Background

Lattice-based PoK for linear relation

®* High-Level Description
" Public: Be€ R, c e RE for k < ¢ (R: polynomial ring)

" We want to prove the knowledge of r € R and m € M (c R¥) s.t.

c=Br+m(modg) and ||r|l, <B8.




Background

Lattice-based PoK for linear relation

® BFV encryption
® Parameters : Ciphertext modulus g, plaintext modulus t | g, error distribution y.

" Publickey :p = (po,p1)" € RS
" Ciphertext : For a message m € R;, the encryption algorithm samples r = (1y,7¢,73) < x> and return

T
C :7"2‘13"‘(7"0 +(q/t) - m, 7'1) (mod q)
®The BFV ciphertext can also be expressed as

c = Br+ m (mod qg)
where B =[I, | p] € RZ3 and m = ((q/t) - m, O)T.

®* Proof of Plaintext Knowledge (PPK) for BFV encryption:

To prove the knowledge of the message m and the encryption randomness r for given ciphertext c

[Bra12] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from classical GapSVP”, CRYPTO 2012.
[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic encryption®, ePrint 2012/144.



Background

Lattice-based PoK for linear relation

®* BDLOP commitment

® Parameters : Modulus g, error distribution y.
" Commitmentkey: B=R-[I; | A] € RE*! for A € Rgx(k_{)) and invertible R € R*¥
® Commitment . For a message m € R;, the commitment algorithm samples r « x¥* and return

¢ = Br+m (mod g)

where m = L?J

® Proof of Opening Knowledge (POK) for BDLOP commitment:

To prove the knowledge of the message m and the commitment randomness r for given commitment ¢

[BDLOP18] Carsten Baum, lvan Damgard, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. "More efficient commitments from structured lattice
assumptions”, SCN 2018.
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Motivation
Zero-Knowledge “Overkill”

® Conventional goal of Zero-knowledge:

Zero-knowledge w.r.t. both message m and randomness r

®* BUT! Zero-knowledge of randomness can be an overkill for many of PoK applications

® Then, the natural question would be:
® How about refining the goal of zero-knowledge as following?

Zero-knowledge w.r.t. only message m

® Can we still achieve zero-knowledge of m while allowing the leakage of r information?



Motivation

Previous Approaches

® Y-protocol Framework:

Prover ¢ = Br + m (mod q)

Verifier

' ‘ 1) Commitment: d; = By; +u; (mod g) for1 <i < ?

m, r

2) Challenge: (V1,V2,--+,Y¢)

l 3) Response: (Vi,Z2;) = (U, y;) +v; - (mr)forl <i <4 ‘ . .
Generate random elements: Generate random challenges:
ui(_M’Yi(_DTnd yl<—6for1SlS€
forl <i<?

4) Verification:
BZi+Vi ; di+)/i - C,
Iz I< B,
forl1<i<Y?



Motivation

Previous Approaches: Noise Flooding

®* For the zero-knowledge proof, previous work adopted statistical methods.

¢ = Br + m (mod q)

Prover Verifier
' ‘ 1) Commitment: d; = By; +u; (mod g) for1 <i < ?
m, r
_. 2) Challenge: (Y1,V2,---, Ye)
l (u;,v; --(m,rforlﬁiﬁf
Generate random elements: Noise Flooding Generate random chgllenges:
u; « M,y; « Dppg Set ||Cug, y)Il > [ly; - (m,r)| yvieCforl=sis<d{
for1 <i<¥ to make (V;, Z;) statistically independent to (m, )

4) Verification:
BZi+Vi ; di+)/i - C,
Iz I< B,
forl1<i<Y?



Motivation

Previous Approaches: Noise Flooding

®* For the zero-knowledge proof, previous work adopted statistical methods.

¢ = Br + m (mod q)

Prover Verifier
' ‘ 1) Commitment: d; = By; +u; (mod g) for1 <i < ?
m, r
| 2) Challenge: (Y1,V2,---, Ye)
l (u;,v; --(m,rforlﬁiﬁf
Generate random elements: Noise Flooding Generate random challenges:
u « M,y; < D4 Set ||(uy, v)I|[ > |ly; - (m, 1) Vi< Cforl<i<?®
forl <i<? to make (V;, Z;) statistical\\\jndependent to (Im, I)

4) Verification:
BZi+Vi ; di+)/i - C,
?
| z; I< B,

v Distribution-independent Solution forl<i<?
v' Exponential Overhead




Motivation

Previous Approaches: Rejection Sampling

®* For the zero-knowledge proof, previous work adopted statistical methods.

¢ = Br + m (mod q)

Prover Verifier
' ‘ . 1) Commitment: d; = By; +u; (modg)forl1 <i< ¥ |
m, r

2) Challenge: (V1,¥2,---,Y¢)

Generate random elements: Rejection Sampling Generate random challenges:
u, « M,y; « D4 Reject and re-run the steps with certain probability yie Cforl<i<<?
forl <i<? to make (V;, Z; ) statistically independent to (m, r)

4) Verification:
BZi+Vi ; di+)/i - C,
Iz I< B,
forl1<i<Y?



Motivation

Previous Approaches: Rejection Sampling

® For the zero-knowledge proof, previous work adopted statistical methods.

Prover ¢ = Br + m (mod q)

Verifier

m, r

Generate random elements: Rejection Sampling Generate random challenges:
u <« M,y; <D, 4 Reject and re-run the steps with certain probability yie Cforl<i<<?
forl <i<¥ Z; ) statistically independent to (m, )

4) Verification:
BZi+Vi ; di+)/i - C,
Iz I< B,
forl1<i<Y?

v Polynomial/Constant Overhead
v' Multiple iterations (exponential in multi-prover case)
v" Side-channel attack vulnerability



Motivation

New Framework

®* “Refined” zero-knowledge proof based on computational hardness assumption!

Prover ¢ = Br + m (mod q)

Verifier

1) Commitment: d; = By; +u; (mod g) for1 <i < ?

2) Challenge: (V1,V2,--+,Y¢)

3) Response: (vj,Z;) = (U, y) +y;-(mr)forl1 <i< ¥ ‘ . .

e
—

—

Generate random elements: New Approach Generate random challenges:
I < Ding Even if the r information is partially leaked from Z;’s, yi < Cforl<i<?
u, « M,y; « D! L : ‘
L 1 2t ernd m is still perfectly hided under -
forl =1 = computational hardness assumption! J 4) Verification:
o — BZi+Vi:di+)/i'C,
2
Il z; I< B,

forl<i<?
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Our Work

A New Framework on Lattice-based PoK with “refined” Zero-Knowledge

® We first propose secure lattice-based PoK protocols w/o noise flooding or rejection sampling
® Zero-knowledge w.r.t. message holds under the “Hint-MLWE” assumption.

® v.s. noise flooding . exponential - polynomial/constant overhead

® v.s. rejection sampling : 0(\/dim) smaller soundness slack, no repetition required

® Instantiation on the following primitives:
® Proof of Plaintext Knowledge (PPK) for BFV encryption
® Proof of Opening Knowledge (POK) for BDLOP commitment
O Naturally extendable to various BDLOP-based ZKP applications
® Tight Reduction from MLWE to Hint-MLWE under discrete Gaussian setting
O LWE-HInt-LWE & RLWE-HInt-RLWE also hold



Proof Sketch

Zero-Knowledge w.r.t. Message

®* Need to show the transcript (c, (d;, y;,v;,Z;);) is simulatable without the message m

Prover

Verifier

¢ = Br + m (mod q) !

' ‘ 1) Commitment:§

d; = By; + y; (modqfor1SiS{’

2) Challenge? ()/1, Y2, - '." V{?)

' 3) Response$

vi,Z;) = (uy,y;) +v; - (m, r)or 1<i<?

Generate random elements: Our Approach Generate random challenges:
I < Ding , Even if the r information is partially leaked from Z;’s, Y < Cforl <i <4
U & M,y; < Dipg m is still perfectly hided under
forl<i=<4¢ computational hardness assumption! J 4) Verification:

BZi+Vi£di+)/i'C,
I z; 1< B,
forl <i <<



Proof Sketch

Zero-Knowledge w.r.t. Message

®* Observation 1: Trivially-simulatable components of the transcript (c, (d;, y;, v;,Z;);):
1. d; can be generated by the other components and the public key B
- d;=By;+u;=B(z;—y; r)+(vi—y; - m)=Bz; +v;—y; - C
2. v; is also trivially simulatable for each case as following:
- PPK of BFV encryption v; =u; +¥; - m (mmod t) is uniform modulo ¢t
- POK of BDLOP commitment : u; = 0 & Do not send v; to the verifier

®* Now, it suffices to simulate (c, (z;);) for public key B and challenges (y4,v5, ..., V¢)



Proof Sketch

Zero-Knowledge w.r.t. Message
® Observation 2: The tuple (B, c,z,,%,, ...,Z,) can be expressed as

(B,Br+m,y; ‘r+y,y, r+yvy,..,.7, r+y,

® Since B =R [I| A] for a public invertible matrix R, it is equivalent to simulate

(A: [I ‘A]l‘ T R_l "M,y r+~yy,yr0-y..,Ve Ir Y€)



Proof Sketch

Zero-Knowledge w.r.t. Message
® Observation 2: The tuple (B, c,z,,%,, ...,Z,) can be expressed as

(B,Br+m,y; ‘r+y,y, r+yvy,..,.7, r+y,

® Since B =R [I| A] for a public invertible matrix R, it is equivalent to simulate

MLWE Instance Hints on the secretr
over the secretr



Proof Sketch

Zero-Knowledge w.r.t. Message

® Observation 2: The tuple (B, c,z,,%,, ...,Z,) can be expressed as

(B,Br+m,y; ‘r+y,y, r+yvy,..,.7, r+y,

® Since B =R [I| A] for a public invertible matrix R, it is equivalent to simulate

(A: [I ‘A]l‘ T R_l "M,y r+~yy,yr0-y..,Ve Ir Y€)
?

(A, uniform ,Y1 ' r+yy,Ys r+vys .., ¥, r+yp)



Proof Sketch

Zero-Knowledge w.r.t. Message
®* Observation 2: The tuple (B, c,z,,2,, ...,Z,) can be expressed as

(B,Br+m,y; ‘r+y,y, r+yvy,..,.7, r+y,

® Since B =R |I| A] for a public invertible matrix R, it is equivalent to simulate

(A: [l ‘A]I‘ T R_l "M,y r+~yy,yr0-y..,Ve Ir Y€)

(A, uniform vy, - r+vVy, ¥, r+Vo,..,¥r - r+Vy)

Simulatable!




Hint-MLWE

Definition

® MLWEg, 4 1m ¢, Assumption:

(A, [I|A]r)
c ¢
(A, b )

for A & R4, b & RG, T & Dt (discrete Gaussian)

[LS15] Adeline Langlois, and Damien Stehle. "Worst-case to average-case reductions for module lattices." Designs, Codes and Cryptography, 2015.



Hint-MLWE

Definition

® Hint-MLWE.?2¢ _ Assumption:

R,d,m,q,04
(A LAl Yy v+ Y, Y2 T+ Yo, o Ve T+ V)
c {
(A, b ,y; r+y,y, r+Yys ..,V T+Yp)
for A & R7™%, b & R\, T & Dm+d,y < D7+ (discrete Gaussian), and y; < C

® Generalized notion of Hint-LWE [CKK+18] and Multi-Hint Extended RLWE [BKMS22]

[CKK+18] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Joohee Lee, Junbum Shin, and Yongsoo Song. "Lattice-based secure biometric authentication for
hamming distance." ACISP 2021.

[BKMS22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian. "Efficient lattice-based inner-product functional encryption."
PKC 2022.



Hint-MLWE

Computational Hardness

1 B
4 2) where B := £ - max ||y||?.
o2 o y<C

f,O’z,C

R, dm,q,01

Theorem: Let 0,04, 0, > 0 be reals such that — = 2(

0-2
If 0 = ne(Z"), there exists poly-time reduction from MLWEg, ;,,, . , t0 Hint-MLWE
with advantage loss < (d + m) - 2e.

Implication
* Hint-MLWE w/ width ¢4 = 20, 6, = 2+/Ba is harder than MLWE w/ width &
® 1-bit larger size of secretr (o, V.S. 0)

* lyillz=0(2-lly;-rllz) (o2 V.s.09)



Hint-MLWE

Computational Hardness

1 B
> 2) where B := £ - max ||y||%.

01 02 y<C

f,O’z,C

R, dm,q,01

Theorem: Let g,0,,0, > 0 be reals such that — = 2(

g2
If 0 = ne(Z"), there exists poly-time reduction from MLWEg, ;,,, » , t0 Hint-MLWE
with advantage loss < (d + m) - 2e.

How to Prove?
®* Reverse the point of view ©
®* Analyze the “conditional distribution” of r for given hints (y; - r +vy;);
® Then, [I| A]r can be simulated “from” A, (y; - r +vy;);, and given MLWE instance



Results

Comparison v.s. Previous Methods

Assumption

Method Type Zero-Knowledge Soundness slack
Noise Flooding o Message 1z;1l, = 0(2%/% - |ly; - rll,)
Statistical 2
Rejection Analysis Randomness — 0(+/
Sampling 1Z;|l, = o(Vdn - |ly; - rll2)
: Cryptographic
Hint-MLWE |~ YPtosrdP Message 1z;ll, = o(Ve - lly; - rll,)

The slack is “independent”
to dimension




Results

Practicality: Application to various Lattice-based ZKPs

* Hint-MLWE framework Is naturally applicable to various BDLOP-based proof systems:
" Proof of multiplicative relation [ALS20]
" Proof of knowledge for a (ternary) solution of linear system over Z, [ENS20]

® Smaller Parameters than previous results based on rejection sampling

® Please refer to the full version for more details: https://ia.cr/2023/623

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. "Practical product proofs for lattice commitments®, CRYPTO 2020.

[ENS20] Muhammed F. Esgin, Ngoc K. Nguyen, and Gregor Seliler. "Practical exact proofs from lattices: New techniques to exploit fully-splitting rings.”
ASIACRYPT 2020.


https://ia.cr/2023/623
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