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Basic Framework
= Given a trapdoor lattice A (VK) with a trapdoor T (SK)

= For a message m, generate s (Sign) satisfying

As = H(m) &|||s|| < B |(«< via the trapdoor T)

= Security
* Hard to find SK from VK and pairs of (m, s)

* Hard to find “small” s satisfying As = H(m)
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Hash-and-Sign Signature

How to generate a Trapdoor Lattice?

= Gentry-Peikert-Vaikuntanathan [GPV08]

* For g = poly(n) and m = w(n log q), there exists an algorithm outputs (4,T) € Z7"™xZJ"*™ s.t.

A

= 0 (mod q)

satisfying
1. |IT|l < m'*€ (a basis of Ag(A))
2. D(A) =~ UZPrm™

* Drawback in Practicality: too large parameters (due to statistical property and w/o ring structure)
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How to generate a Trapdoor Lattice?

® Ducas-Lyubashevsky-Prest [DLP[4]

 Substitute a plain trapdoor lattice w/ statistical property by a ring structure and computational property

“NTRU Trapdoor Lattice”

* For“small” f,g € R, = Z,[X]/(X" + 1) and h = % ,one can generate “small” F, G € R, s.t.

= 0 (mod q)

h -1

satisfying
fG —gF=q
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Our Goal:

To publish a (ring) lattice A € Rng w/ short basis T of A7 (4), which does NOT give any
information of T computationally

““How can we interpret the NTRU trapdoor lattice in high-level?”
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Observations
" Generate T from A is too hard! = generate 4 from T!

= Rank(T) over R, < Rank(T) over R = we can NOT arbitrarily choose all elements of T
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k A = 0 (mod q)
“ d — k = Rank(T) over R, < d
dx(d—Fk) [NTRU assumption
- % d |. Choose short § € R,
2. Compute its R -orthogonal basis A, which does
(dk)=(21)

not give S information computationally

|
= NTRU Trapdoor! 3. Generate T € RI*Us.t. A(T) = A(S|lqly)

. J




High-level structure of Trapdoor Lattice

Observations
" Generate T from A is too hard! = generate 4 from T!

= Rank(T) over R, < Rank(T) over R = we can NOT arbitrarily choose all elements of T

d d—k
k A = 0 (mod q)
“ d — k = Rank(T) over R, < d
dx(d—Fk) [NTRU assumption

- % d |. Choose short § € R,

2. Compute its R -orthogonal basis A, which does
_ I(~ld'I"II;)U=T(2’ (11) : not give S information computationally
rapdoor: 3. Generate T € Rgx‘i s.t. A(T) = A(S|lqly)
. J
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Our ldea — Generalization

Consider the case (d, k) = (3,1) :! Can be Generalized tothecase k =1 ]

Aq | A, | A3 = 0 (mod q)

Multi-instance NTRU assumption ]

|. Generate “short” (f;, g;, h;) fori =1, 2
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Our ldea — Generalization

fi f2 F
How to compute “short” (F, G, H) satisfyingdet| g1 g G |=q?
hi, h, H

F
= |mitate the NTRU trapdoor computing “short” (F,G) s.t. fG — Fg = det (g G) =4

Assume that res(f) =[] f(x?'*1) € Z and res(g) are coprime

a-res(f) — B -res(g) =1 = (qa - [liwo f(x**1)) - F0) — (@B - Tizo 9 (x**!)) - 9(x) = gq
= G = F

Reduce (F,, Gy) with a "short” vector (f, g),and output (F, G)
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Our ldea — Generalization

fi f2 F

How to compute “short” (F, G, H) satisfyingdet| g1 g G |=q?
h, h, H

= Our Case

* Assume gcd(res(f1g2 — f291),res(g1hy — g2hy), res(hyf, — hyf1)) =1
*  Obtain (Fy, Go, Hy) satisfying Fy - (g1hy — gxh1) + Go - (hefz — hof1) + Ho - (f192 — f291) = q
« Reduce (Fy, Gy, Hy) with “short” vectors (f;, g1, h1) and (f5, g», h,)
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Ongoing Works and Expectation

= Analysis
 Cryptanalysis on Multi-instance NTRU

* Analysis on Signature size

= Expectation
 Better Flexibility on Parameters than Falcon

 Generalization of specific NTRU Trapdoor
* What else..?






