Toward New Practical Digital Signature Scheme based on Lattices

Duhyeong Kim

Joint work with Jung Hee Cheon, Jaeyoon Kim, Yongha Son

Crypto Winter Workshop Jan 03, 2019

Hash-and-Sign

Basic Framework

• Given a trapdoor lattice A (VK) with a trapdoor T (SK)

- Given a trapdoor lattice A (VK) with a trapdoor T (SK)
- For a message m, generate s (Sign) satisfying

$$As = H(m) \& ||s|| < \beta$$

- Given a trapdoor lattice A (VK) with a trapdoor T (SK)
- For a message m, generate s (Sign) satisfying

$$As = H(m) \& ||s|| < \beta$$
 (\Leftarrow via the trapdoor T)

- Given a trapdoor lattice A (VK) with a trapdoor T (SK)
- For a message m, generate s (Sign) satisfying

$$As = H(m) \& ||s|| < \beta \ (\iff \text{via the trapdoor } T)$$

- Security
 - Hard to find SK from VK and pairs of (m, s)

- Given a trapdoor lattice A (VK) with a trapdoor T (SK)
- For a message m, generate s (Sign) satisfying

$$As = H(m) \& ||s|| < \beta$$
 (\Leftarrow via the trapdoor T)

- Security
 - Hard to find SK from VK and pairs of (m, s)
 - Hard to find "small" s satisfying As = H(m)

How to generate a Trapdoor Lattice?

How to generate a Trapdoor Lattice?

Gentry-Peikert-Vaikuntanathan [GPV08]

How to generate a Trapdoor Lattice?

- Gentry-Peikert-Vaikuntanathan [GPV08]
 - For q = poly(n) and $m = \omega(n \log q)$, there exists an algorithm outputs $(A, T) \in Z_q^{n \times m} \times Z_q^{m \times m}$ s.t.

How to generate a Trapdoor Lattice?

- Gentry-Peikert-Vaikuntanathan [GPV08]
 - For q = poly(n) and $m = \omega(n \log q)$, there exists an algorithm outputs $(A, T) \in Z_q^{n \times m} \times Z_q^{m \times m}$ s.t.

A

$$\equiv 0 \pmod{q}$$

T

How to generate a Trapdoor Lattice?

- Gentry-Peikert-Vaikuntanathan [GPV08]
 - For q = poly(n) and $m = \omega(n \log q)$, there exists an algorithm outputs $(A, T) \in Z_q^{n \times m} \times Z_q^{m \times m}$ s.t.

A

T

$$\equiv 0 \pmod{q}$$

satisfying

1.
$$||T|| \le m^{1+\epsilon}$$
 (a basis of $\Lambda_q^{\perp}(A)$)

How to generate a Trapdoor Lattice?

- Gentry-Peikert-Vaikuntanathan [GPV08]
 - For q = poly(n) and $m = \omega(n \log q)$, there exists an algorithm outputs $(A, T) \in Z_q^{n \times m} \times Z_q^{m \times m}$ s.t.

A

T

$$\equiv 0 \pmod{q}$$

satisfying

1.
$$||T|| \le m^{1+\epsilon}$$
 (a basis of $\Lambda_q^{\perp}(A)$)

2.
$$D(A) \approx U(Z_q^{n \times m})$$

How to generate a Trapdoor Lattice?

- Gentry-Peikert-Vaikuntanathan [GPV08]
 - For q = poly(n) and $m = \omega(n \log q)$, there exists an algorithm outputs $(A, T) \in Z_q^{n \times m} \times Z_q^{m \times m}$ s.t.

A

T

$$\equiv 0 \pmod{q}$$

satisfying

1.
$$||T|| \le m^{1+\epsilon}$$
 (a basis of $\Lambda_q^{\perp}(A)$)

2.
$$D(A) \approx U(Z_q^{n \times m})$$

Drawback in Practicality: too large parameters (due to statistical property and w/o ring structure)

How to generate a Trapdoor Lattice?

Ducas-Lyubashevsky-Prest [DLP14]

How to generate a Trapdoor Lattice?

- Ducas-Lyubashevsky-Prest [DLP14]
 - Substitute a plain trapdoor lattice w/ statistical property by a ring structure and computational property

How to generate a Trapdoor Lattice?

- Ducas-Lyubashevsky-Prest [DLP14]
 - Substitute a plain trapdoor lattice w/ statistical property by a ring structure and computational property

"NTRU Trapdoor Lattice"

How to generate a Trapdoor Lattice?

- Ducas-Lyubashevsky-Prest [DLP14]
 - Substitute a plain trapdoor lattice w/ statistical property by a ring structure and computational property

"NTRU Trapdoor Lattice"

• For "small" $f,g \in R_q = Z_q[X]/(X^n+1)$ and $h = \frac{g}{f}$, one can generate "small" $F,G \in R_q$ s.t.

How to generate a Trapdoor Lattice?

- Ducas-Lyubashevsky-Prest [DLP14]
 - Substitute a plain trapdoor lattice w/ statistical property by a ring structure and computational property

"NTRU Trapdoor Lattice"

• For "small" $f,g \in R_q = Z_q[X]/(X^n+1)$ and $h = \frac{g}{f}$, one can generate "small" $F,G \in R_q$ s.t.

Our Goal:

To publish a (ring) lattice $A \in R_q^{k \times d}$ w/ short basis T of $\Lambda_q^{\perp}(A)$, which does NOT give any information of T computationally

Our Goal:

To publish a (ring) lattice $A \in R_q^{k \times d}$ w/ short basis T of $\Lambda_q^{\perp}(A)$, which does NOT give any information of T computationally

"How can we interpret the NTRU trapdoor lattice in high-level?"

Observations

Observations

■ Generate T from A is too hard! \Rightarrow generate A from T!

Observations

- Generate T from A is too hard! \Longrightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

Observations

- Generate T from A is too hard! \Longrightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

 $k \qquad \qquad d \qquad \qquad d - k$ $k \qquad \qquad A \qquad \qquad \equiv 0 \ (mod \ q)$ $d \qquad \qquad \Leftrightarrow d - k = \text{Rank}(T) \text{ over } R_q < d$

Observations

- Generate T from A is too hard! \Rightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

d d-k k A d S

$$\equiv 0 \pmod{q}$$

$$d - k = \text{Rank}(T) \text{ over } R_q < d$$

I. Choose short $S \in R_q^{d \times (d-k)}$

Observations

- Generate T from A is too hard! \Rightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

d d-k k A d S

$$\equiv 0 \pmod{q}$$

$$d - k = \text{Rank}(T) \text{ over } R_q < d$$

I. Choose short $S \in R_q^{d \times (d-k)}$

Observations

- Generate T from A is too hard! \Longrightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

d d-k k A S

$$\equiv 0 \pmod{q}$$

- $d k = \text{Rank}(T) \text{ over } R_q < d$
- I. Choose short $S \in R_q^{d \times (d-k)}$
- 2. Compute its R_q -orthogonal basis A, which does not give S information computationally

Observations

- Generate T from A is too hard! \Rightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

d d-k k A d S

$$\equiv 0 \pmod{q}$$

- $d k = \text{Rank}(T) \text{ over } R_q < d$
- I. Choose short $S \in R_q^{d \times (d-k)}$
- 2. Compute its R_q -orthogonal basis A, which does not give S information computationally
- 3. Generate $T \in R_q^{d \times d}$ s.t. $\Lambda(T) = \Lambda(S||qI_d)$

Observations

- Generate T from A is too hard! \Rightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

$$\equiv 0 \pmod{q}$$

- $d k = \text{Rank}(T) \text{ over } R_q < d$
- I. Choose short $S \in R_q^{d \times (d-k)}$
- 2. Compute its R_q -orthogonal basis A, which does not give S information computationally
- 3. Generate $T \in R_q^{d \times d}$ s.t. $\Lambda(T) = \Lambda(S||qI_d)$

Observations

- Generate T from A is too hard! \Rightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

 $d \qquad d - k$ $k \qquad A \qquad \qquad S$ (d, k) = (2, 1) $\Rightarrow \mathsf{NTRU Trapdoor!}$

$$\equiv 0 \pmod{q}$$

- $d-k=\operatorname{Rank}(T) \text{ over } R_q < d$ I. Choose short $S \in R_q^{d \times (d-k)}$ NTRU assumption
- 2. Compute its R_q -orthogonal basis A, which does not give S information computationally
- 3. Generate $T \in R_q^{d \times d}$ s.t. $\Lambda(T) = \Lambda(S||qI_d)$

Observations

- Generate T from A is too hard! \Rightarrow generate A from T!
- Rank(T) over R_q < Rank(T) over $R \implies$ we can NOT arbitrarily choose all elements of T

$$d \qquad d - k$$

$$k \qquad A \qquad \qquad S$$

$$(d, k) = (2, 1)$$

$$\Rightarrow \mathsf{NTRU Trapdoor!}$$

$$\equiv 0 \pmod{q}$$

- $d-k=\operatorname{Rank}(T)$ over $R_q < d$ I. Choose short $S \in R_q^{d \times (d-k)}$ NTRU assumption
- 2. Compute its R_q -orthogonal basis A, which does not give S information computationally
- 3. Generate $T \in R_q^{d \times d}$ s.t. $\Lambda(T) = \Lambda(S||qI_d)$

$$fG - Fg = q$$

Our Idea

Our Idea – Generalization

Consider the case (d, k) = (3, 1)

Consider the case (d, k) = (3, 1) Can be Generalized to the case k = 1

Consider the case
$$(d, k) = (3, 1)$$
 Can be Generalized to the case $k = 1$

Consider the case
$$(d, k) = (3, 1)$$
 Can be Generalized to the case $k = 1$

I. Generate "short" (f_i, g_i, h_i) for i = 1, 2

Consider the case
$$(d, k) = (3, 1)$$
 Can be Generalized to the case $k = 1$

- I. Generate "short" (f_i, g_i, h_i) for i = 1, 2
- 2. Set $(A_1, A_2, A_3) = r \cdot (g_1h_2 g_2h_1, h_1f_2 h_2f_1, f_1g_2 f_2g_1)$ for Random $r \in R_q$

Consider the case
$$(d, k) = (3, 1)$$
 Can be Generalized to the case $k = 1$

- I. Generate "short" (f_i, g_i, h_i) for i = 1, 2
- 2. Set $(A_1, A_2, A_3) = r \cdot (g_1h_2 g_2h_1, h_1f_2 h_2f_1, f_1g_2 f_2g_1)$ for Random $r \in R_q$
- 3. Compute "short" (F, G, H) satisfying $\det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$

Consider the case
$$(d, k) = (3, 1)$$
 Can be Generalized to the case $k = 1$

Multi-instance NTRU assumption

- I. Generate "short" (f_i, g_i, h_i) for i = 1, 2
- 2. Set $(A_1, A_2, A_3) = r \cdot (g_1h_2 g_2h_1, h_1f_2 h_2f_1, f_1g_2 f_2g_1)$ for Random $r \in R_q$
- 3. Compute "short" (F, G, H) satisfying $\det \begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$

How to compute "short"
$$(F, G, H)$$
 satisfying $det \begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

Imitate the NTRU trapdoor computing "short" (F,G) s.t. $fG - Fg = det \begin{pmatrix} f & F \\ g & G \end{pmatrix} = q$

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Imitate the NTRU trapdoor computing "short" (F,G) s.t. $fG Fg = det \begin{pmatrix} f & F \\ g & G \end{pmatrix} = q$
 - Assume that $res(f) = \prod f(x^{2i+1}) \in Z$ and res(g) are coprime

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Imitate the NTRU trapdoor computing "short" (F,G) s.t. $fG Fg = det \begin{pmatrix} f & F \\ g & G \end{pmatrix} = q$
 - Assume that $res(f) = \prod f(x^{2i+1}) \in Z$ and res(g) are coprime
 - $\alpha \cdot res(f) \beta \cdot res(g) = 1 \Longrightarrow (q\alpha \cdot \prod_{i \neq 0} f(x^{2i+1})) \cdot f(x) (q\beta \cdot \prod_{i \neq 0} g(x^{2i+1})) \cdot g(x) = q$

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Imitate the NTRU trapdoor computing "short" (F,G) s.t. $fG Fg = det \begin{pmatrix} f & F \\ g & G \end{pmatrix} = q$
 - Assume that $res(f) = \prod f(x^{2i+1}) \in Z$ and res(g) are coprime

•
$$\alpha \cdot res(f) - \beta \cdot res(g) = 1 \Rightarrow \underline{(q\alpha \cdot \prod_{i \neq 0} f(x^{2i+1}))} \cdot f(x) - \underline{(q\beta \cdot \prod_{i \neq 0} g(x^{2i+1}))} \cdot g(x) = q$$

 $\coloneqq G_0$ $\coloneqq F_0$

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Imitate the NTRU trapdoor computing "short" (F,G) s.t. $fG Fg = det \begin{pmatrix} f & F \\ g & G \end{pmatrix} = q$
 - Assume that $res(f) = \prod f(x^{2i+1}) \in Z$ and res(g) are coprime
 - $\alpha \cdot res(f) \beta \cdot res(g) = 1 \Rightarrow \underline{(q\alpha \cdot \prod_{i \neq 0} f(x^{2i+1}))} \cdot f(x) \underline{(q\beta \cdot \prod_{i \neq 0} g(x^{2i+1}))} \cdot g(x) = q$ $\coloneqq G_0$ $\coloneqq F_0$
 - Reduce (F_0, G_0) with a "short" vector (f, g), and output (F, G)

How to compute "short"
$$(F, G, H)$$
 satisfying $det \begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

Our Case

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Our Case
 - Assume $gcd(res(f_1g_2 f_2g_1), res(g_1h_2 g_2h_1), res(h_1f_2 h_2f_1)) = 1$

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Our Case
 - Assume $gcd(res(f_1g_2 f_2g_1), res(g_1h_2 g_2h_1), res(h_1f_2 h_2f_1)) = 1$
 - Obtain (F_0, G_0, H_0) satisfying $F_0 \cdot (g_1 h_2 g_2 h_1) + G_0 \cdot (h_1 f_2 h_2 f_1) + H_0 \cdot (f_1 g_2 f_2 g_1) = q$

How to compute "short"
$$(F, G, H)$$
 satisfying $det\begin{pmatrix} f_1 & f_2 & F \\ g_1 & g_2 & G \\ h_1 & h_2 & H \end{pmatrix} = q$?

- Our Case
 - Assume $gcd(res(f_1g_2 f_2g_1), res(g_1h_2 g_2h_1), res(h_1f_2 h_2f_1)) = 1$
 - Obtain (F_0, G_0, H_0) satisfying $F_0 \cdot (g_1 h_2 g_2 h_1) + G_0 \cdot (h_1 f_2 h_2 f_1) + H_0 \cdot (f_1 g_2 f_2 g_1) = q$
 - Reduce (F_0, G_0, H_0) with "short" vectors (f_1, g_1, h_1) and (f_2, g_2, h_2)

Ongoing Works and Expectation

Ongoing Works and Expectation

- Analysis
 - Cryptanalysis on Multi-instance NTRU
 - Analysis on Signature size

- Expectation
 - Better Flexibility on Parameters than Falcon
 - Generalization of specific NTRU Trapdoor
 - What else..?

