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> Pros: High efficiency in gate operations and max/comparison operations
« Comparison of £-bit integers: O(f) complexity and log ¥ depth
» Cons: Polynomial evaluation (addition & multiplication) is very inefficient!
“Word-wise” Encryption can be more suitable in many of real-world applications

such as privacy-preserving machine learning
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= Word-wise Encryption
» Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)

» Cons: Not easy to evaluate non-polynomial functions
« Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)

« Substitute max(ay, ..., ay) by the summation a; + --- + a,, (< application-dependent solution)

Q. Can we find an efficient polynomial approximation

for Min/Max and Comparison?
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Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.
= Efficiency
* Our Method = General Polynomial Approximation (asymptotically)
*  Our Method achieves (quasi-)optimality in asymptotic complexity
* Our Method = Bit-wise Comparison in encrypted state (amortized running time)
= Applications

« Top-k-max, and Threshold counting (+ Sorting, Clustering,...)
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Key Idea

Use Iterative Algorithms !

» General polynomial evaluation requires @(,/deg) multiplications
» However, in iterative algorithms, Complexity = ©(Depth) = O(log deg) = O(#iterations)

> If we use a structured polynomial which can be evaluated by iterative algorithms, then we
may achieve much smaller complexity
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One-variable expression of Max & Comparison

= Max(a,b) = a;b + la;bl & la| = Max(a,0) = Max(0,a)

= Comp(a,b) = xjo,0)(a —b) = X[0,0)(a) = Comp(a,0) = Comp(0, —a)

Max = Absolute function & Comp = Step function!

Approximately compute absolute and step functions by iterative algorithms
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Min / Max

a+b a—b| a+b . +/(a—b)?
= Max(a,b) = + ! = +
2 2 2 2

Algorithm 2 Sqrt(z;d) |. Givena,b € [0,2{’)
Input: 0<z<1,deN a b
Output: an approximate value of \/z (refer Lemma 2) 2. Scale down (a, b) — (? ,?)
1: . .

). ZS o 3. Use Algorithm 2 for input
3: forn<0tod—1do (a—b)ZE[O,l)

. _ b
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5 b < 07 (P40)

6: end for
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Min / Max

= Max(a,b) = agb +

Algorithm 2 Sqrt(z;d)

Input: 0<z<1,deN

Output: an approximate value of \/x
1: ag < x
2: bgp+—x —1

3: forn+0tod—1do

4:  ap+1 — an (1 — %”)

5 b < 07 (P40)

6: end for

7: return ay

(refer Lemma 2)

Theorem | (Informal). Ifld = 6(a)

(resp.d = O(log a)), the error of

Max(a, b; d) from the true value |

Max(a, b) is bounded by 27% for

any a, b € [0,1) (resp. unif. randomly chosen a, b with high prob.)

|. Given a,b € [0,27)
2. Scale down (a, b) « (— _)

3. Use Algorithm 2 for input
(a —b)? €[0,1)
4. Scale up the result by 2¢

Select the parameter d based on
Theorem |
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Fig. 1. Approximation of the step function x (¢ ~) by scaled sigmoid functions



Comparison

Motivation
Sigmoid approximation of the Step function x g, )

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f




Comparison

Motivation
Sigmoid approximation of the Step function x g, )

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Take f(x) = log x, then exponential function e*/(® = polynomial a*!



Comparison

Motivation
Sigmoid approximation of the Step function x g, )

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Take f(x) = log x, then exponential function e*/(® = polynomial a*!

ak

i, = = Compe.




Comparison

Motivation
Sigmoid approximation of the Step function x g, )

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Take f(x) = log x, then exponential function e*/(® = polynomial a*!

ak

i, = = Compe.

‘ We need an iterative algorithm for inversion!



Comparison

Goldschmidt’s Inverse Algorithm

Algorithm 1 Inv(z;d) Convergence Rate:
Input: 0 <x<2,deN 1 2d+1
Output: an approximate value of 1/z (refer Lemma 1) |ad - ;‘ = (1 — X)

l: ap <2 —=x

2: bp+—1—x

3: forn+0tod—1do 1 3

4: bn—|—1<_b% ForESxSE,

o Any1 ¢ G - (1 + bpyr) 1 _od+1

6: end for ‘ad — J_C‘ <2

7. return ay

1 1

T Toa— s A+ A-0)A+a-0)(1+ A -0Y - (1+ A -0%)
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ak

?
ak +pk

= Main Obstacle of computing

— Normalization: Inverse operation of (ak + bk)

— Hard to control the size of (ak + bk) if k is too large

—> |terative Normalization with much smaller k



Iterative Normalization
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I. Scale down a, b € (0,2%) into (1 2) via mapping x
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Repeat the following for t times
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x+2t-1
2{’

I. Scale down a, b € (0,2%) into (1 2) via mapping x

2. (a,b) < (— In v(a—+b d) g (ﬂ d)) (Initial Normalization)

Repeat the following for t times

3. (a,b) « (a®-Inv(a® +b?d),b? - Inv(a® + b%d))  (lterative Normalization)

t t
a’ b2

a2t 4p2t’ g2t p2t

The output = ( ) ~ (a = max(a,b)?,b = max(a,b)?)




Iterative Normalization

-1
|. Scaledown a,b € (O,Z{]) into G,g) via mapping x x+22{,
2 (a,b) « (g - Inv (aTH?; d) ,g - Inv (azib; d)) (Initial Normalization)

~

Theorem 2 (Informal). For t = O@(a) and d = O(log ), the error rate of

Repeat the following fo C0mP(a,b; d, t) compared to the true comp(a, b) is bounded by 27 for

1 3 . . max(ab) _
a,b € |=,=| satisfying — >1+ 27
\/

t t
a’ b2

a2t 4p2t’ g2t p2t

The output = ( ) ~ (a = max(a,b)?,b = max(a,b)?)




Asymptotic Optimality
of our Method



Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of |x| and ¥ g wo:
Theorem 3
’lim k- |l|x] — prllo,—1,1] = B for some constant f ~ 0.28

Theorem 4

k—1
14+€ 1—€

Ill—rgo 2 (:) o “X(O,OO) - qkf”oo,[—l,—E]U[E,l] - 2\/te

Py degree-k minimax approx. poly. of |x| over the interval [—1,1]

(i - degree-k minimax approx. poly. of x (g «)over the interval [—1,—€] U [¢, 1]
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Theoretical results on the polynomial approximation of [x| and x(g,c0): To obtain
’ 0(27%) error:

Theorem 3

lim k - |||x| = pllco,(-1,17 = B for some constant § ~ 0.28 k> 0(2%
—00
Theorem 4
k= 0(a)
. for const €
lim E(li) 2| . “ e
kooN 2 M X(0,0) = Dkellog[-1,-elule1] ~ 2me | k2 O(a- 2%
fore=27¢%
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Overall, to achieve 0(27%) error :
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Our Method vs. Minimax Approx.

Overall, to achieve 0(27%) error :

Minimax Approx. | Our Method ~
min /max O (24/?) O(x) Optimal )
= w(l 5 @ (log” A
comparison ‘ w(_ ) “lva) 5 (log™ ) Quasi-
e =2"¢ O (Va- 20/ ) O (alog Optimal |

Table 1. Complexity of our methods and minimax approximation method

Complexity > 0(Depth) = O(log Degree)



Implementation Results



P

= Input: two 8-bit integers a, b (or fractional numbers in [0, I] w/ difference > 2-8)

= Qutput: max(a, b) with 8-bit precision

® Performance

VV VYV

HElib ~ 1ms 1800
Bit-wise 0
TFHE ~ 1 ms -
Ours Word-wise HEAAN 0.73 ms 216 <28

Ours: on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
HEAAN parameter (with 128-bit security): logN = 17, logQ = 930,4 = 192.2

Theoretical (# iterations): |3

Practical (# iterations): | |



Comparison

= |nput: two 8-bit integers a, b (or fractional numbers in [0, I] w/ difference > 2-8)
= Qutput: comp(a, b) with 8-bit precision

® Performance

Ours Word-wise 4.72 ms

» on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
» HEAAN parameters

v Comp: logN =17, logQ = 1870, logp = 30, A = 108.9
> # Iterations: (d,t) = (5,6)
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Follow-up Study

= Can we design a new framework for the polynomial approximation of min/max and
comparison operations? v

= Can we achieve the optimal complexity for the comparison algorithm? v

= Can we make a trade-off between depth and complexity? v

) YES! ()

If interested, welcome to ia.cr/2019/1234







