

Numerical Method for Comparison on Homomorphically Encrypted Numbers

Jung Hee Cheon, Dongwoo Kim, **Duhyeong Kim**, Hun Hee Lee, and Keewoo Lee

Seoul National University

ASIACRYPT 2019 Kobe, Japan

Homomorphic Encryption

• Homomorphic Encryption is a cryptosystem which allows computations on ciphertexts.

• Homomorphic Encryption is a cryptosystem which allows computations on ciphertexts.

Encryption methods: "bit-wise" encryption and "word-wise" encryption

Encryption	Plaintext space	Basic operation
Bit-wise	{0,1}	Logical gate, Look-up Table
Word-wise	${\mathbb C}$ or ${\mathbb Z}_p$	Addition, Multiplication

Encryption methods: "bit-wise" encryption and "word-wise" encryption

Encryption	Plaintext space	Basic operation
Bit-wise	{0,1}	Logical gate, Look-up Table
Word-wise	${\mathbb C}$ or ${\mathbb Z}_p$	Addition, Multiplication

- Bit-wise Encryption
 - > Pros: High efficiency in gate operations and max/comparison operations
 - Comparison of ℓ -bit integers: $\Theta(\ell)$ complexity and $\log \ell$ depth
 - > Cons: Polynomial evaluation (addition & multiplication) is very inefficient!

Encryption methods: "bit-wise" encryption and "word-wise" encryption

Encryption	Plaintext space	Basic operation
Bit-wise	{0,1}	Logical gate, Look-up Table
Word-wise	${\mathbb C}$ or ${\mathbb Z}_p$	Addition, Multiplication

Bit-wise Encryption

- Pros: High efficiency in gate operations and max/comparison operations
 - Comparison of ℓ -bit integers: $\Theta(\ell)$ complexity and $\log \ell$ depth
- Cons: Polynomial evaluation (addition & multiplication) is very inefficient!

"Word-wise" Encryption can be more suitable in many of real-world applications such as privacy-preserving machine learning

- Word-wise Encryption
 - > Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)
 - Cons: Not easy to evaluate non-polynomial functions
 - Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)
 - Substitute $max(a_1, ..., a_n)$ by the summation $a_1 + \cdots + a_n$ (\Leftarrow application-dependent solution)

- Word-wise Encryption
 - > Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)
 - Cons: Not easy to evaluate non-polynomial functions
 - Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)
 - Substitute $\max(a_1, \dots, a_n)$ by the summation $a_1 + \dots + a_n$ (\Leftarrow application-dependent solution)

Q. Can we find an efficient polynomial approximation for Min/Max and Comparison?

Propose efficient approximate algorithms of Min/Max & Comparison operations for word-wise HEs with concrete error analysis.

Propose efficient approximate algorithms of Min/Max & Comparison operations for word-wise HEs with concrete error analysis.

Efficiency

- Our Method \geq General Polynomial Approximation (asymptotically)
- Our Method achieves (quasi-)optimality in asymptotic complexity
- Our Method \approx Bit-wise Comparison in encrypted state (amortized running time)

Propose efficient approximate algorithms of Min/Max & Comparison operations for word-wise HEs with concrete error analysis.

Efficiency

- Our Method \geq General Polynomial Approximation (asymptotically)
- Our Method achieves (quasi-)optimality in asymptotic complexity
- Our Method ≈ Bit-wise Comparison in encrypted state (amortized running time)

Applications

• Top-k-max, and Threshold counting (+ Sorting, Clustering,...)

Use Iterative Algorithms !

Use Iterative Algorithms !

> General polynomial evaluation requires $\Theta(\sqrt{deg})$ multiplications [PS'73]

> However, in iterative algorithms, Complexity = $\Theta(\text{Depth}) = \Theta(\log \deg) = \Theta(\# \text{iterations})$

If we use a structured polynomial which can be evaluated by iterative algorithms, then we may achieve much smaller complexity

Min / Max & Comparison

One-variable expression of Max & Comparison

$$Max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2} \qquad \Leftrightarrow \qquad |a| = Max(a,0) = Max(0,a)$$
$$Comp(a,b) = \chi_{[0,\infty)}(a-b) \qquad \Leftrightarrow \qquad \chi_{[0,\infty)}(a) = Comp(a,0) = Comp(0,-a)$$

One-variable expression of Max & Comparison

•
$$Max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2} \iff |a| = Max(a,0) = Max(0,a)$$

•
$$\operatorname{Comp}(a, b) = \chi_{[0,\infty)}(a - b) \quad \Leftrightarrow \quad \chi_{[0,\infty)}(a) = \operatorname{Comp}(a, 0) = \operatorname{Comp}(0, -a)$$

Max = Absolute function & Comp = Step function!

One-variable expression of Max & Comparison

•
$$Max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2} \iff |a| = Max(a,0) = Max(0,a)$$

•
$$\operatorname{Comp}(a, b) = \chi_{[0,\infty)}(a - b) \quad \Leftrightarrow \quad \chi_{[0,\infty)}(a) = \operatorname{Comp}(a, 0) = \operatorname{Comp}(0, -a)$$

Max = Absolute function & Comp = Step function!

Approximately compute absolute and step functions by iterative algorithms

Min / Max

•
$$Max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{\sqrt{(a-b)^2}}{2}$$

Min / Max

•
$$Max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{\sqrt{(a-b)^2}}{2}$$

Algorithm 2 Sqrt(x; d)

Input: $0 \le x \le 1, d \in \mathbb{N}$

Output: an approximate value of \sqrt{x} (refer Lemma 2)

1: $a_0 \leftarrow x$ 2: $b_0 \leftarrow x - 1$ 3: for $n \leftarrow 0$ to d - 1 do 4: $a_{n+1} \leftarrow a_n \left(1 - \frac{b_n}{2}\right)$ 5: $b_{n+1} \leftarrow b_n^2 \left(\frac{b_n - 3}{4}\right)$ 6: end for 7: return a_d

- I. Given $a, b \in [0, 2^{\ell})$
- 2. Scale down $(a, b) \leftarrow \left(\frac{a}{2^{\ell}}, \frac{b}{2^{\ell}}\right)$
- 3. Use Algorithm 2 for input $(a b)^2 \in [0,1)$
- 4. Scale up the result by 2^{ℓ}

Min / Max

•
$$Max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{\sqrt{(a-b)^2}}{2}$$

Algorithm 2 Sqrt(x; d)

Input: $0 \le x \le 1, d \in \mathbb{N}$

Output: an approximate value of \sqrt{x} (refer Lemma 2)

1: $a_0 \leftarrow x$ 2: $b_0 \leftarrow x - 1$ 3: for $n \leftarrow 0$ to d - 1 do 4: $a_{n+1} \leftarrow a_n \left(1 - \frac{b_n}{2}\right)$ 5: $b_{n+1} \leftarrow b_n^2 \left(\frac{b_n - 3}{4}\right)$ 6: end for 7: return a_d

Theorem I (Informal). If $d = \theta(\alpha)$ (resp. $d = \theta(\log \alpha)$), the error of Max(a, b; d) from the true value Max(a, b) is bounded by $2^{-\alpha}$ for any $a, b \in [0,1)$ (resp. unif. randomly chosen a, b with high prob.)

Select the parameter d based on Theorem I

I. Given $a, b \in [0, 2^{\ell})$

2. Scale down
$$(a, b) \leftarrow \left(\frac{a}{2^{\ell}}, \frac{b}{2^{\ell}}\right)$$

3. Use Algorithm 2 for input $(a - b)^2 \in [0, 1)$

4. Scale up the result by
$$2^{\ell}$$

Motivation

Sigmoid approximation of the Step function $\chi_{(0,\infty)}$

Fig. 1. Approximation of the step function $\chi_{(0,\infty)}$ by scaled sigmoid functions

Motivation

Sigmoid approximation of the Step function $\chi_{(0,\infty)}$

$$Comp(a,b) = \chi_{(0,\infty)}(f(a) - f(b))$$

$$\approx \sigma_k(f(a) - f(b)) \coloneqq \frac{1}{1 + e^{-k(f(a) - f(b))}} = \frac{e^{kf(a)}}{e^{kf(a)} + e^{kf(b)}} \text{ for any strictly increasing function } f$$

Motivation

Sigmoid approximation of the Step function $\chi_{(0,\infty)}$

$$Comp(a,b) = \chi_{(0,\infty)}(f(a) - f(b))$$

$$\approx \sigma_k(f(a) - f(b)) \coloneqq \frac{1}{1 + e^{-k(f(a) - f(b))}} = \frac{e^{kf(a)}}{e^{kf(a)} + e^{kf(b)}} \text{ for any strictly increasing function } f$$

Take $f(x) = \log x$, then exponential function $e^{kf(a)} \Rightarrow$ polynomial a^k !

Motivation

Sigmoid approximation of the Step function $\chi_{(0,\infty)}$

$$Comp(a,b) = \chi_{(0,\infty)}(f(a) - f(b))$$

$$\approx \sigma_k(f(a) - f(b)) \coloneqq \frac{1}{1 + e^{-k(f(a) - f(b))}} = \frac{e^{kf(a)}}{e^{kf(a)} + e^{kf(b)}} \text{ for any strictly increasing function } f$$

Take $f(x) = \log x$, then exponential function $e^{kf(a)} \Rightarrow$ polynomial a^k !

$$\lim_{k \to \infty} \frac{a^k}{a^k + b^k} = Comp(a, b)$$

Motivation

Sigmoid approximation of the Step function $\chi_{(0,\infty)}$

$$Comp(a,b) = \chi_{(0,\infty)}(f(a) - f(b))$$

$$\approx \sigma_k(f(a) - f(b)) \coloneqq \frac{1}{1 + e^{-k(f(a) - f(b))}} = \frac{e^{kf(a)}}{e^{kf(a)} + e^{kf(b)}} \text{ for any strictly increasing function } f$$

Take $f(x) = \log x$, then exponential function $e^{kf(a)} \Rightarrow$ polynomial a^k !

$$\lim_{k \to \infty} \frac{a^k}{a^k + b^k} = Comp(a, b)$$

We need an iterative algorithm for inversion!

Goldschmidt's Inverse Algorithm

Algorithm 1 Inv(x; d)

Input: $0 < x < 2, d \in \mathbb{N}$

Output: an approximate value of 1/x (refer Lemma 1)

1: $a_0 \leftarrow 2 - x$

$$2: \ b_0 \leftarrow 1 - x$$

3: for
$$n \leftarrow 0$$
 to $d - 1$ do

4: $b_{n+1} \leftarrow b_n^2$ 5: $a_{n+1} \leftarrow a_n \cdot (1 + b_{n+1})$

$$b: \quad a_{n+1} \leftarrow a_n \cdot (1 + b_{n+1})$$

6: end for

7: return a_d

Convergence Rate:

$$\left|a_d - \frac{1}{x}\right| \le (1 - x)^{2^{d+1}}$$

For
$$\frac{1}{2} \le x \le \frac{3}{2}$$
,
 $\left| a_d - \frac{1}{x} \right| \le 2^{-2^{d+1}}$

$$\frac{1}{x} = \frac{1}{1 - (1 - x)} \approx \left(1 + (1 - x)\right) \left(1 + (1 - x)^2\right) \left(1 + (1 - x)^4\right) \cdots \left(1 + (1 - x)^{2^d}\right)$$

• Main Obstacle of computing $\frac{a^k}{a^k + b^k}$?

- Main Obstacle of computing $\frac{a^k}{a^k + b^k}$?
 - \Rightarrow Normalization: Inverse operation of $(a^k + b^k)$

- Main Obstacle of computing $\frac{a^k}{a^k + b^k}$?
 - \Rightarrow Normalization: Inverse operation of $(a^k + b^k)$
 - \implies Hard to control the size of $(a^k + b^k)$ if k is too large

- Main Obstacle of computing $\frac{a^k}{a^k + b^k}$?
 - \Rightarrow Normalization: Inverse operation of $(a^k + b^k)$
 - \implies Hard to control the size of $(a^k + b^k)$ if k is too large
 - \implies Iterative Normalization with much smaller k

Iterative Normalization

I. Scale down
$$a, b \in (0, 2^{\ell})$$
 into $\left(\frac{1}{2}, \frac{3}{2}\right)$ via mapping $x \mapsto \frac{x+2^{\ell-1}}{2^{\ell}}$

2.
$$(a,b) \leftarrow \left(\frac{a}{2} \cdot Inv\left(\frac{a+b}{2};d\right), \frac{b}{2} \cdot Inv\left(\frac{a+b}{2};d\right)\right)$$
 (Initial Normalization)

Repeat the following for t times

3.
$$(a,b) \leftarrow (a^2 \cdot Inv(a^2 + b^2; d), b^2 \cdot Inv(a^2 + b^2; d))$$
 (Iterative Normalization)

Iterative Normalization

I. Scale down
$$a, b \in (0, 2^{\ell})$$
 into $\left(\frac{1}{2}, \frac{3}{2}\right)$ via mapping $x \mapsto \frac{x+2^{\ell-1}}{2^{\ell}}$

2.
$$(a,b) \leftarrow \left(\frac{a}{2} \cdot Inv\left(\frac{a+b}{2};d\right), \frac{b}{2} \cdot Inv\left(\frac{a+b}{2};d\right)\right)$$
 (Initial Normalization)

Repeat the following for *t* times

3. $(a,b) \leftarrow (a^2 \cdot Inv(a^2 + b^2; d), b^2 \cdot Inv(a^2 + b^2; d))$ (Iterative Normalization)

The output
$$\approx \left(\frac{a^{2^{t}}}{a^{2^{t}}+b^{2^{t}}}, \frac{b^{2^{t}}}{a^{2^{t}}+b^{2^{t}}}\right) \approx (a = \max(a, b)?, b = \max(a, b)?)$$

Iterative Normalization

I. Scale down
$$a, b \in (0, 2^{\ell})$$
 into $(\frac{1}{2}, \frac{3}{2})$ via mapping $x \mapsto \frac{x+2^{\ell-1}}{2^{\ell}}$

2.
$$(a,b) \leftarrow \left(\frac{a}{2} \cdot Inv\left(\frac{a+b}{2};d\right), \frac{b}{2} \cdot Inv\left(\frac{a+b}{2};d\right)\right)$$
 (Initial Normalization)
Repeat the following for
3. $(a,b) \leftarrow \left(a^2 \cdot Int\right)$ (Informal). For $t = \Theta(\alpha)$ and $d = \Theta(\log \alpha)$, the error rate of $Comp(a,b;d,t)$ compared to the true $comp(a,b)$ is bounded by $2^{-\alpha}$ for
 $a,b \in \left[\frac{1}{2},\frac{3}{2}\right]$ satisfying $\frac{\max(a,b)}{\min(a,b)} \ge 1 + 2^{-\alpha}$.
The output $\approx \left(\frac{a^{2^{t}}}{a^{2^{t}} + b^{2^{t}}}, \frac{b^{2^{t}}}{a^{2^{t}} + b^{2^{t}}}\right) \approx (a = \max(a,b)?, b = \max(a,b)?)$

Asymptotic Optimality of our Method

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of |x| and $\chi_{(0,\infty)}$:

Theorem 3 [Ber'14]

 $\lim_{k \to \infty} k \cdot |||x| - p_k||_{\infty, [-1,1]} = \beta \text{ for some constant } \beta \approx 0.28$ **Theorem 4** [EY'07]

$$\lim_{k \to \infty} \sqrt{\frac{k-1}{2}} \cdot \left(\frac{1+\epsilon}{1-\epsilon}\right)^{\frac{k-1}{2}} \cdot \left\|\chi_{(0,\infty)} - q_{k,\epsilon}\right\|_{\infty, [-1,-\epsilon] \cup [\epsilon,1]} = \frac{1-\epsilon}{2\sqrt{\pi\epsilon}}$$

 p_k : degree-k minimax approx. poly. of |x| over the interval [-1,1]

 $q_{k,\epsilon}$: degree-k minimax approx. poly. of $\chi_{(0,\infty)}$ over the interval $[-1, -\epsilon] \cup [\epsilon, 1]$

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of |x| and $\chi_{(0,\infty)}$: **Theorem 3** [Ber' 4]

$$\lim_{k \to \infty} k \cdot \||x| - p_k\|_{\infty, [-1, 1]} = \beta \text{ for some constant } \beta \approx 0.28$$

To obtain

 $O(2^{-\alpha})$ error:

 $k \geq \Theta(2^{\alpha})$

 $k \geq \Theta(\alpha)$

for const ϵ

 $k \geq \Theta(lpha \cdot 2^{lpha})$ for $\epsilon = 2^{-lpha}$

Theorem 4 [EY'07]

$$\lim_{k \to \infty} \sqrt{\frac{k-1}{2}} \cdot \left(\frac{1+\epsilon}{1-\epsilon}\right)^{\frac{k-1}{2}} \cdot \left\| \chi_{(0,\infty)} - q_{k,\epsilon} \right\|_{\infty, [-1,-\epsilon] \cup [\epsilon,1]} = \frac{1-\epsilon}{2\sqrt{\pi\epsilon}}$$

 p_k : degree-k minimax approx. poly. of |x| over the interval [-1,1]

 $q_{k,\epsilon}$: degree-k minimax approx. poly. of $\chi_{(0,\infty)}$ over the interval $[-1, -\epsilon] \cup [\epsilon, 1]$

Our Method vs. Minimax Approx.

Overall, to achieve $O(2^{-\alpha})$ error :

		Minimax Approx.	Our Method
\min/\max		$\Theta(2^{\alpha/2})$	$\Theta(lpha)$
comparison	$\epsilon = \omega(1)$	$\Theta(\sqrt{\alpha})$	$oldsymbol{\Theta}\left(\log^2lpha ight)$
	$\epsilon = 2^{-\alpha}$	$\Theta\left(\sqrt{lpha}\cdot2^{lpha/2} ight)$	$oldsymbol{\Theta}\left(lpha \log lpha ight)$

Table 1. Complexity of our methods and minimax approximation method

Our Method vs. Minimax Approx.

Overall, to achieve $O(2^{-\alpha})$ error :

		Minimax Approx.	Our Method
\min/\max		$\Theta(2^{\alpha/2})$	$oldsymbol{\Theta}(lpha)$
comparison	$\epsilon = \omega(1)$	$\Theta(\sqrt{\alpha})$	$oldsymbol{\Theta}\left(\log^2lpha ight)$
	$\epsilon = 2^{-\alpha}$	$\Theta\left(\sqrt{lpha}\cdot2^{lpha/2} ight)$	$oldsymbol{\Theta}\left(lpha\loglpha ight)$

Table 1. Complexity of our methods and minimax approximation method

Complexity $\geq \Theta$ (**Depth**) = Θ (log Degree)

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of |x| and $\chi_{(0,\infty)}$: **Theorem 3** [Ber' 4]

$$\lim_{k \to \infty} k \cdot \||x| - p_k\|_{\infty, [-1, 1]} = \beta \text{ for some constant } \beta \approx 0.28$$

To obtain

 $O(2^{-\alpha})$ error:

 $k \geq \Theta(2^{\alpha})$

 $k \geq \Theta(\alpha)$

for const ϵ

 $k \geq \Theta(lpha \cdot 2^{lpha})$ for $\epsilon = 2^{-lpha}$

Theorem 4 [EY'07]

$$\lim_{k \to \infty} \sqrt{\frac{k-1}{2}} \cdot \left(\frac{1+\epsilon}{1-\epsilon}\right)^{\frac{k-1}{2}} \cdot \left\| \chi_{(0,\infty)} - q_{k,\epsilon} \right\|_{\infty, [-1,-\epsilon] \cup [\epsilon,1]} = \frac{1-\epsilon}{2\sqrt{\pi\epsilon}}$$

 p_k : degree-k minimax approx. poly. of |x| over the interval [-1,1]

 $q_{k,\epsilon}$: degree-k minimax approx. poly. of $\chi_{(0,\infty)}$ over the interval $[-1, -\epsilon] \cup [\epsilon, 1]$

Our Method vs. Minimax Approx.

Overall, to achieve $O(2^{-\alpha})$ error :

Table 1. Complexity of our methods and minimax approximation method

Complexity $\geq \Theta$ (**Depth**) = Θ (log **Degree**)

Implementation Results

- Input: two 8-bit integers a, b (or fractional numbers in [0, 1] w/ difference > 2⁻⁸)
- Output: max(a, b) with 8-bit precision
- Performance

Work	Method	Scheme	Amortized Running time	# of pairs	Error
[CGH+18]	Bit-wise	HElib	$pprox 1 \ { m ms}$	1800	0
[CGGII7]		TFHE	$pprox 1 \ { m ms}$	-	U
Ours	Word-wise	HEAAN	0 .73 ms	216	< 2 ⁻⁸

- > Ours: on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
- → HEAAN parameter (with 128-bit security): $\log N = 17$, $\log Q = 930$, $\lambda = 192.2$
- Theoretical (# iterations): 13
- Practical (# iterations): 11

- Input: two 8-bit integers a, b (or fractional numbers in [0, 1] w/ difference > 2⁻⁸)
- Output: comp(a, b) with 8-bit precision
- Performance

Work	Method	Amortized Running time	# of pairs	Error
Ours	Word-wise	4.72 ms	216	< 2 ⁻⁷

> on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.

- > HEAAN parameters
 - ✓ Comp: $\log N = 17$, $\log Q = 1870$, $\log p = 30$, $\lambda = 108.9$
- → # lterations: (d, t) = (5,6)

Can we design a new framework for the polynomial approximation of min/max and comparison operations?

- Can we design a new framework for the polynomial approximation of min/max and comparison operations?
- Can we achieve the optimal complexity for the comparison algorithm?

- Can we design a new framework for the polynomial approximation of min/max and comparison operations?
- Can we achieve the optimal complexity for the comparison algorithm?
- Can we make a trade-off between depth and complexity?

- Can we design a new framework for the polynomial approximation of min/max and comparison operations?
- Can we achieve the optimal complexity for the comparison algorithm?
- Can we make a trade-off between depth and complexity?

If interested, welcome to ia.cr/2019/1234

