
Numerical Method for Comparison on
Homomorphically Encrypted Numbers

Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo Lee

Seoul National University

ASIACRYPT 2019
Kobe, Japan

Homomorphic Encryption

§ Homomorphic Encryption is a cryptosystem which allows computations on ciphertexts.

Homomorphic Encryption (HE)

§ Homomorphic Encryption is a cryptosystem which allows computations on ciphertexts.

Homomorphic Encryption (HE)

!

"#$(!) "#$ ' !
=)' "#$!

'(!)'()

)'()

"#$ *+$() "#$ *+$()

¡ Encryption methods: “bit-wise” encryption and “word-wise” encryption

¡ Bit-wise Encryption

Ø Pros: High efficiency in gate operations and max/comparison operations

• Comparison of ℓ-bit integers: Θ(ℓ) complexity and log ℓ depth

Ø Cons: Polynomial evaluation (addition & multiplication) is very inefficient!

“Word-wise” Encryption is more suitable in many of real-world applications

such as privacy-preserving machine learning

Homomorphic Encryption (HE)

Encryption Plaintext space Basic operation

Bit-wise {0,1} Logical gate, Look-up Table

Word-wise ℂ or ℤ/ Addition, Multiplication

¡ Encryption methods: “bit-wise” encryption and “word-wise” encryption

¡ Bit-wise Encryption

Ø Pros: High efficiency in gate operations and max/comparison operations

• Comparison of ℓ-bit integers: Θ(ℓ) complexity and log ℓ depth

Ø Cons: Polynomial evaluation (addition & multiplication) is very inefficient!

“Word-wise” Encryption is more suitable in many of real-world applications

such as privacy-preserving machine learning

Homomorphic Encryption (HE)

Encryption Plaintext space Basic operation

Bit-wise {0,1} Logical gate, Look-up Table

Word-wise ℂ or ℤ/ Addition, Multiplication

¡ Encryption methods: “bit-wise” encryption and “word-wise” encryption

¡ Bit-wise Encryption

Ø Pros: High efficiency in gate operations and max/comparison operations

• Comparison of ℓ-bit integers: Θ(ℓ) complexity and log ℓ depth

Ø Cons: Polynomial evaluation (addition & multiplication) is very inefficient!

“Word-wise” Encryption can be more suitable in many of real-world applications

such as privacy-preserving machine learning

Homomorphic Encryption (HE)

Encryption Plaintext space Basic operation

Bit-wise {0,1} Logical gate, Look-up Table

Word-wise ℂ or ℤ/ Addition, Multiplication

¡ Word-wise Encryption
Ø Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)

Ø Cons: Not easy to evaluate non-polynomial functions

• Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)

• Substitute max $%, … , $(by the summation $% + ⋯+ $((⟸ application-dependent solution)

Q. Can we find an efficient polynomial approximation

for Min/Max and Comparison?

Homomorphic Encryption (HE)

¡ Word-wise Encryption
Ø Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)

Ø Cons: Not easy to evaluate non-polynomial functions

• Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)

• Substitute max $%, … , $(by the summation $% + ⋯+ $((⟸ application-dependent solution)

Q. Can we find an efficient polynomial approximation

for Min/Max and Comparison?

Homomorphic Encryption (HE)

Our Contribution

¡ Better Efficiency

• Our Method ≥ General Polynomial Approximation (asymptotically)

• Our Method achieves Asymptotic Optimality in some sense

• Our Method w/ HEAAN ≈ Bit-wise Comparison w/ HElib (amortized running time)

¡ Flexibility

• Precision error control only with (# of iterations)

Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.

¡ Efficiency

• Our Method ≥ General Polynomial Approximation (asymptotically)

• Our Method achieves (quasi-)optimality in asymptotic complexity

• Our Method ≈ Bit-wise Comparison in encrypted state (amortized running time)

¡ Flexibility

• Precision error control only with (# of iterations)

Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.

¡ Efficiency

• Our Method ≥ General Polynomial Approximation (asymptotically)

• Our Method achieves (quasi-)optimality in asymptotic complexity

• Our Method ≈ Bit-wise Comparison in encrypted state (amortized running time)

¡ Applications

• Top-k-max, and Threshold counting (+ Sorting, Clustering,…)

Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.

Use Iterative Algorithms !

Ø General polynomial evaluation requires Θ "#$%## multiplications.

Ø However, in iterative algorithms, Complexity = O(Depth) = O(log "#$%##)

Ø If we use Structured Polynomial which we can apply iterative algorithms, we may achieve
much smaller complexity.

Key Idea

Use Iterative Algorithms !

Ø General polynomial evaluation requires Θ "#$ multiplications [PS’73]

Ø However, in iterative algorithms, Complexity = Θ(Depth) = Θ(log "#$) = Θ(#iterations)

Ø If we use a structured polynomial which can be evaluated by iterative algorithms, then we
may achieve much smaller complexity

Key Idea

Min / Max & Comparison

One-variable expression of Max & Comparison

¡ Max !, # = %&'
(+ |%+'|

(⟺ ! = -!. !, 0 = -!.(0, !)
¡ Comp !, # = 2 3,4 (! − #) ⟺ 2 3,4 ! = Comp !, 0 = Comp 0,−!

Max = Absolute function & Comp = Step function!

Q. How can be efficiently approximate those functions by polynomials?

One-variable expression of Max & Comparison

¡ Max !, # = %&'
(+ |%+'|

(⟺ ! = -!. !, 0 = -!.(0, !)
¡ Comp !, # = 2 3,4 (! − #) ⟺ 2 3,4 ! = Comp !, 0 = Comp 0,−!

Max = Absolute function & Comp = Step function!

Q. How can be efficiently approximate those functions by polynomials?

One-variable expression of Max & Comparison

¡ Max !, # = %&'
(+ |%+'|

(⟺ ! = -!. !, 0 = -!.(0, !)
¡ Comp !, # = 2 3,4 (! − #) ⟺ 2 3,4 ! = Comp !, 0 = Comp 0,−!

Max = Absolute function & Comp = Step function!

Approximately compute absolute and step functions by iterative algorithms

Min / Max

¡ Max !, # = %&'
(+ |%+'|

(= %&'
(+ %+' ,

(
1. Given !, # ∈ 0,2ℓ
2. Scale down !, # ← %

(ℓ ,
'
(ℓ

3. Use Algorithm 2 for input
! − # (∈ [0,1)

4. Scale up the result by 2ℓ

Select the parameter 6 based on
Theorem 1

Theorem 1(Informal). If 6 = 7(9) (resp. 6 = 7(log 9)), the error of
Max !, #; 6 from the true value Max !, # is bounded by 2+> for
any !, # ∈ [0,1) (resp. unif. randomly chosen !, # with high prob.)

Min / Max

¡ Max !, # = %&'
(+ |%+'|

(= %&'
(+ %+' ,

(
1. Given !, # ∈ 0,2ℓ
2. Scale down !, # ← %

(ℓ ,
'
(ℓ

3. Use Algorithm 2 for input
! − # (∈ [0,1)

4. Scale up the result by 2ℓ

Select the parameter 6 based on
Theorem 1

Theorem 1(Informal). If 6 = 7(9) (resp. 6 = 7(log 9)), the error of
Max !, #; 6 from the true value Max !, # is bounded by 2+> for
any !, # ∈ [0,1) (resp. unif. randomly chosen !, # with high prob.)

Min / Max

¡ Max !, # = %&'
(+ |%+'|

(= %&'
(+ %+' ,

(
1. Given !, # ∈ 0,2ℓ
2. Scale down !, # ← %

(ℓ ,
'
(ℓ

3. Use Algorithm 2 for input
! − # (∈ [0,1)

4. Scale up the result by 2ℓ

Select the parameter 6 based on
Theorem 1

Theorem 1(Informal). If 6 = 7(9) (resp. 6 = 7(log 9)), the error of
Max !, #; 6 from the true value Max !, # is bounded by 2+> for
any !, # ∈ [0,1) (resp. unif. randomly chosen !, # with high prob.)

Comparison

Motivation
Sigmoid approximation of the Step function ! ",$

%&'(), * = ! ",$,()) − ,(*)
≈ 12 ,()) − ,(*) ≔ 4

45678 9(:)79(;) =
689(:)

689(:)5689(;) for any strictly increasing function ,

Take , < = log <, then exponential function @2A(B) ⟹ polynomial)2!

Comparison

Comparison

Motivation
Sigmoid approximation of the Step function ! ",$

%&'(), * = ! ",$,()) − ,(*)
≈ 12 ,()) − ,(*) ≔ 4

45678 9(:)79(;) =
689(:)

689(:)5689(;) for any strictly increasing function ,

Take , < = log <, then exponential function @2A(B) ⟹ polynomial)2!

Comparison

Motivation
Sigmoid approximation of the Step function ! ",$

%&'(), * = ! ",$,()) − ,(*)
≈ 12 ,()) − ,(*) ≔ 4

45678 9(:)79(;) =
689(:)

689(:)5689(;) for any strictly increasing function ,

Take < = = >?@=, then exponential function AB<(C) ⟹ polynomial CB!

Comparison

Motivation
Sigmoid approximation of the Step function ! ",$

%&'(), * = ! ",$,()) − ,(*)

≈ 12 ,()) − ,(*) ≔
4

45678 9(:)79(;) =
689(:)

689(:)5689(;)
for any strictly increasing function ,

Take < = = >?@=, then exponential function AB<(C) ⟹ polynomial CB!

lim
2→$

)2

)2 + *2
= %&'((), *)

Comparison

Motivation
Sigmoid approximation of the Step function ! ",$

%&'(), * = ! ",$,()) − ,(*)

≈ 12 ,()) − ,(*) ≔
4

45678 9(:)79(;) =
689(:)

689(:)5689(;)
for any strictly increasing function ,

Take < = = >?@=, then exponential function AB<(C) ⟹ polynomial CB!

lim
2→$

)2

)2 + *2
= %&'((), *)

We need an iterative algorithm for inversion!

Comparison

Goldschmidt’s Inverse Algorithm
Convergence Rate:

!" − $
% ≤ 1 − ()*+,

For $) ≤ (≤ -
),

!" − $
% ≤ 2/)*+,

0
1 =

0
0 − (0 − 1) ≈ 0 + 0 − 1 0 + 0 − 1 7 0 + 0 − 1 8 ⋯ 0 + 0 − 1 7:

Comparison

¡ Main Obstacle of computing
!"

!" #$" ?

⟹ Normalization: Inverse operation of ('(+ *()
⟹ Hard to control the size of ('(+ *() if , is too large

⟹ Iterative Normalization with much smaller ,

Comparison

¡ Main Obstacle of computing
!"

!" #$" ?

⟹ Normalization: Inverse operation of ('(+ *()
⟹ Hard to control the size of ('(+ *() if , is too large

⟹ Iterative Normalization with much smaller ,

Comparison

¡ Main Obstacle of computing
!"

!" #$" ?

⟹ Normalization: Inverse operation of ('(+ *()
⟹ Hard to control the size of ('(+ *() if , is too large

⟹ Iterative Normalization with much smaller ,

Comparison

¡ Main Obstacle of computing
!"

!" #$" ?

⟹ Normalization: Inverse operation of ('(+ *()
⟹ Hard to control the size of ('(+ *() if , is too large

⟹ Iterative Normalization with much smaller ,

Iterative Normalization

1. Scale down !, # ∈ (0,2ℓ) into *
+ ,

,
+ via mapping - ↦ /0+ℓ12

+ℓ

2. !, # ← 5
+ ⋅ 789

50:
+ ; < , :+ ⋅ 789

50:
+ ; < (Initial Normalization)

Repeat the following for = times
3. !, # ← !+ ⋅ 789 !+ + #+; < , #+ ⋅ 789 !+ + #+; < (Iterative Normalization)

Iterative Normalization

1. Scale down !, # ∈ (0,2ℓ) into *

+
,
,

+
via mapping - ↦ /0+ℓ12

+ℓ

2. !, # ←
5

+
⋅ 789

50:

+
; < ,

:

+
⋅ 789

50:

+
; < (Initial Normalization)

Repeat the following for = times

3. !, # ← !+ ⋅ 789 !+ + #+; < , #+ ⋅ 789 !+ + #+; < (Iterative Normalization)

The output ≈ 5F
G

5FG0:FG
,

:F
G

5FG0:FG
≈ ! = max !, # ? , # = max !, # ?

Iterative Normalization

1. Scale down !, # ∈ (0,2ℓ) into *

+
,
,

+
via mapping - ↦ /0+ℓ12

+ℓ

2. !, # ←
5

+
⋅ 789

50:

+
; < ,

:

+
⋅ 789

50:

+
; < (Initial Normalization)

Repeat the following for = times

3. !, # ← !+ ⋅ 789 !+ + #+; < , #+ ⋅ 789 !+ + #+; < (Iterative Normalization)

The output ≈ 5F
G

5F
G
0:F

G ,
:F

G

5F
G
0:F

G ≈ ! = max !, # ? , # = max !, # ?

Theorem 2 (Informal). For = = Θ M and < = Θ log M , the error rate of
QRST(!, #; <, =) compared to the true URST(!, #) is bounded by 2VW for

!, # ∈
*

+
,
,

+
satisfying XYZ 5,:

X[\ 5,:
≥ 1 + 2VW.

Asymptotic Optimality
of our Method

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of ! and " #,% :

Theorem 3 [Ber’14]

lim)→%+ ⋅ |!| − /) %, 01,1 = 3 for some constant 3 ≈ 0.28
Theorem 4 [EY’07]

lim)→%
)01
9 ⋅ 1:;

10;

<=>
? ⋅ " #,% − @),; %, 01,0; ∪ ;,1 = 10;

9 B;

/) : degree-+ minimax approx. poly. of |!| over the interval [−1,1]
@),;: degree-+ minimax approx. poly. of " #,% over the interval −1,−G ∪ [G, 1]

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of ! and " #,% :

Theorem 3 [Ber’14]

lim
)→%

+ ⋅ |!| − /) %, 01,1 = 3 for some constant 3 ≈ 0.28

Theorem 4 [EY’07]

lim
)→%

)01
9 ⋅ 1:;

10;

<=>
? ⋅ " #,% − @),; %, 01,0; ∪ ;,1 = 10;

9 B;

/) : degree-+ minimax approx. poly. of |!| over the interval [−1,1]

@),;: degree-+ minimax approx. poly. of " #,% over the interval −1,−G ∪ [G, 1]

To obtain
H I0J error:

K ≥ M(IJ)

K ≥ M(J)
for const P

K ≥ M(J ⋅ IJ)
for P = I0J

Our Method vs. Minimax Approx.

Overall, to achieve !(2$%) error :

Our Method vs. Minimax Approx.

Overall, to achieve !(2$%) error :

Complexity ≥ ((Depth) = ((log Degree)

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of ! and " #,% :

Theorem 3 [Ber’14]

lim
)→%

+ ⋅ |!| − /) %, 01,1 = 3 for some constant 3 ≈ 0.28

Theorem 4 [EY’07]

lim
)→%

)01
9 ⋅ 1:;

10;

<=>
? ⋅ " #,% − @),; %, 01,0; ∪ ;,1 = 10;

9 B;

/) : degree-+ minimax approx. poly. of |!| over the interval [−1,1]

@),;: degree-+ minimax approx. poly. of " #,% over the interval −1,−G ∪ [G, 1]

To obtain
H I0J error:

K ≥ M(IJ)

K ≥ M(J)
for const P

K ≥ M(J ⋅ IJ)
for P = I0J

Our Method vs. Minimax Approx.

Overall, to achieve !(2$%) error :

Optimal

Quasi-
Optimal

Complexity ≥ ((Depth) = ((log Degree)

Implementation Results

¡ Input: two 8-bit integers a, b (or fractional numbers in [0, 1] w/ difference > 2-8)

¡ Output: max(a, b) with 8-bit precision

¡ Performance

Max

Ø Ours: on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
Ø HEAAN parameter (with 128-bit security): log$ = 17, log) = 930, - = 192.2
Ø Theoretical (# iterations): 13
Ø Practical (# iterations): 11

Work Method Scheme Amortized Running time # of pairs Error

[CGH+18]
Bit-wise

HElib ≈ 1 ms 1800
0

[CGGI17] TFHE ≈ 1 ms -

Ours Word-wise HEAAN 0.73 ms 216 < 2-8

¡ Input: two 8-bit integers a, b (or fractional numbers in [0, 1] w/ difference > 2-8)

¡ Output: comp(a, b) with 8-bit precision

¡ Performance

Comparison

Work Method Amortized Running time # of pairs Error

Ours Word-wise 4.72 ms 216 < 2-7

Ø on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
Ø HEAAN parameters

ü Comp: log$ = 17, log) = 1870, log , = 30, . = 108.9
Ø # Iterations: 1, 2 = 5,6

§ Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

§ Can we achieve the optimal complexity of the comparison algorithm?

§ Can we make a trade-off between depth and complexity?

YES!

If interested, welcome to ia.cr/2019/1234

Follow-up Study

§ Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

§ Can we achieve the optimal complexity for the comparison algorithm?

§ Can we make a trade-off between depth and complexity?

YES!

If interested, welcome to ia.cr/2019/1234

Follow-up Study

§ Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

§ Can we achieve the optimal complexity for the comparison algorithm?

§ Can we make a trade-off between depth and complexity?

YES!

If interested, welcome to ia.cr/2019/1234

Follow-up Study

§ Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

§ Can we achieve the optimal complexity for the comparison algorithm?

§ Can we make a trade-off between depth and complexity?

YES!

If interested, welcome to ia.cr/2019/1234

Follow-up Study

