Numerical Method for Comparison on
Homomorphically Encrypted Numbers

Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo Lee

Seoul National University

ASIACRYPT 2019
Kobe, Japan

Homomorphic Encryption

Homomorphic Encryption (HE)

= Homomorphic Encryption is a cryptosystem which allows computations on ciphertexts.

Homomorphic Encryption (HE)

= Homomorphic Encryption is a cryptosystem which allows computations on ciphertexts.

Enc() Dec() Enc()} Dec()

fC) = f(Enc(m))

Enc(m)

Homomorphic Encryption (HE)

= Encryption methods:“bit-wise” encryption and “word-wise” encryption

Bit-wise {0,1} Logical gate, Look-up Table
Word-wise CorZ, Addition, Multiplication

Homomorphic Encryption (HE)

= Encryption methods:“bit-wise” encryption and “word-wise” encryption

Bit-wise {0,1} Logical gate, Look-up Table
Word-wise CorZ, Addition, Multiplication
= Bit-wise Encryption
> Pros: High efficiency in gate operations and max/comparison operations
« Comparison of £-bit integers: 0O(£) complexity and log € depth

» Cons: Polynomial evaluation (addition & multiplication) is very inefficient!

Homomorphic Encryption (HE)

= Encryption methods:“bit-wise” encryption and “word-wise” encryption

Bit-wise {0,1} Logical gate, Look-up Table
Word-wise CorZ, Addition, Multiplication

= Bit-wise Encryption
> Pros: High efficiency in gate operations and max/comparison operations
« Comparison of £-bit integers: O(f) complexity and log ¥ depth
» Cons: Polynomial evaluation (addition & multiplication) is very inefficient!
“Word-wise” Encryption can be more suitable in many of real-world applications

such as privacy-preserving machine learning

Homomorphic Encryption (HE)

= Word-wise Encryption
» Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)

» Cons: Not easy to evaluate non-polynomial functions
« Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)

« Substitute max(ay, ..., ay) by the summation a; + --- + a,, (< application-dependent solution)

Homomorphic Encryption (HE)

= Word-wise Encryption
» Pros: Much better performance for polynomial evaluations (e.g., addition almost for free)

» Cons: Not easy to evaluate non-polynomial functions
« Use polynomial approximation (e.g., Taylor, LSA, minimax, etc.)

« Substitute max(ay, ..., ay) by the summation a; + --- + a,, (< application-dependent solution)

Q. Can we find an efficient polynomial approximation

for Min/Max and Comparison?

Our Contribution

Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.

Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.

= Efficiency
* Our Method = General Polynomial Approximation (asymptotically)
* Our Method achieves (quasi-)optimality in asymptotic complexity

* Our Method = Bit-wise Comparison in encrypted state (amortized running time)

Our Contribution

Propose efficient approximate algorithms of Min/Max & Comparison operations for
word-wise HEs with concrete error analysis.
= Efficiency
* Our Method = General Polynomial Approximation (asymptotically)
* Our Method achieves (quasi-)optimality in asymptotic complexity
* Our Method = Bit-wise Comparison in encrypted state (amortized running time)
= Applications

« Top-k-max, and Threshold counting (+ Sorting, Clustering,...)

Key Idea

Use Iterative Algorithms !

Key Idea

Use Iterative Algorithms !

» General polynomial evaluation requires @(,/deg) multiplications
» However, in iterative algorithms, Complexity = ©(Depth) = O(log deg) = O(#iterations)

> If we use a structured polynomial which can be evaluated by iterative algorithms, then we
may achieve much smaller complexity

Min / Max & Comparison

One-variable expression of Max & Comparison

= Max(a,b) = a;b + la;bl & la| = Max(a,0) = Max(0,a)

= Comp(a,b) = xjo,0)(a —b) = X[0,0)(a) = Comp(a,0) = Comp(0, —a)

One-variable expression of Max & Comparison

= Max(a,b) = a;b + la;bl & la| = Max(a,0) = Max(0,a)

= Comp(a,b) = xjo,0)(a —b) = X[0,0)(a) = Comp(a,0) = Comp(0, —a)

Max = Absolute function & Comp = Step function!

One-variable expression of Max & Comparison

= Max(a,b) = a;b + la;bl & la| = Max(a,0) = Max(0,a)

= Comp(a,b) = xjo,0)(a —b) = X[0,0)(a) = Comp(a,0) = Comp(0, —a)

Max = Absolute function & Comp = Step function!

Approximately compute absolute and step functions by iterative algorithms

Min / Max

= Max(a,b) = agb +

Min / Max

a+b a—b| a+b . +/(a—b)?
= Max(a,b) = + ! = +
2 2 2 2

Algorithm 2 Sqrt(z;d) |. Givena,b € [0,2{’)
Input: 0<z<1,deN a b
Output: an approximate value of \/z (refer Lemma 2) 2. Scale down (a, b) — (? ,?)
1: . .

). ZS o 3. Use Algorithm 2 for input
3: forn<0tod—1do (a—b)ZE[O,l)

. _ b

4 angy ¢ an (1 3) 4. Scale up the result by 2°

5 b < 07 (P40)

6: end for

7: return ay

Min / Max

= Max(a,b) = agb +

Algorithm 2 Sqrt(z;d)

Input: 0<z<1,deN

Output: an approximate value of \/x
1: ag < x
2: bgp+—x —1

3: forn+0tod—1do

4: ap+1 — an (1 — %”)

5 b < 07 (P40)

6: end for

7: return ay

(refer Lemma 2)

Theorem | (Informal). Ifld = 6(a)

(resp.d = O(log a)), the error of

Max(a, b; d) from the true value |

Max(a, b) is bounded by 27% for

any a, b € [0,1) (resp. unif. randomly chosen a, b with high prob.)

|. Given a,b € [0,27)
2. Scale down (a, b) « (— _)

3. Use Algorithm 2 for input
(a —b)? €[0,1)
4. Scale up the result by 2¢

Select the parameter d based on
Theorem |

Comparison

Motivation
Sigmoid approximation of the Step function x g,)

Comparison

1.5 4
oa(x)
o16(x)
1 - o64(T)
: — X(0.2¢0)
0.5 t
0
—0.5

—1 —-0.5 0 0.5 1

Fig. 1. Approximation of the step function x (¢ ~) by scaled sigmoid functions

Comparison

Motivation
Sigmoid approximation of the Step function x g,)

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Comparison

Motivation
Sigmoid approximation of the Step function x g,)

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Take f(x) = log x, then exponential function e*/(® = polynomial a*!

Comparison

Motivation
Sigmoid approximation of the Step function x g,)

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Take f(x) = log x, then exponential function e*/(® = polynomial a*!

ak

i, = = Compe.

Comparison

Motivation
Sigmoid approximation of the Step function x g,)

Comp(a,b) = x(0,0)(f (@) — f (b))
okf(@)

1 o : :
~ ox(f(a) — f(D)) = 1+e-kF@-FDB) — gkf(@)+ekf (D) for any strictly increasing function f

Take f(x) = log x, then exponential function e*/(® = polynomial a*!

ak

i, = = Compe.

‘ We need an iterative algorithm for inversion!

Comparison

Goldschmidt’s Inverse Algorithm

Algorithm 1 Inv(z;d) Convergence Rate:
Input: 0 <x<2,deN 1 2d+1
Output: an approximate value of 1/z (refer Lemma 1) |ad - ;‘ = (1 — X)

l: ap <2 —=x

2: bp+—1—x

3: forn+0tod—1do 1 3

4: bn—|—1<_b% ForESxSE,

o Any1 ¢ G - (1 + bpyr) 1 _od+1

6: end for ‘ad — J_C‘ <2

7. return ay

1 1

T Toa— s A+ A-0)A+a-0)(1+ A -0Y - (1+ A -0%)

Comparison

ak

?
ak +pk

= Main Obstacle of computing

Comparison

ak

?
ak +pk

= Main Obstacle of computing

— Normalization: Inverse operation of (ak + bk)

Comparison

ak

?
ak +pk

= Main Obstacle of computing

— Normalization: Inverse operation of (ak + bk)

— Hard to control the size of (ak + bk) if k is too large

Comparison

ak

?
ak +pk

= Main Obstacle of computing

— Normalization: Inverse operation of (ak + bk)

— Hard to control the size of (ak + bk) if k is too large

—> |terative Normalization with much smaller k

Iterative Normalization

x+2t-1
2{’

I. Scale down a, b € (0,2%) into (1 2) via mapping x

2. (a,b) < (— In v(a—+b d) g (ﬂ d)) (Initial Normalization)

Repeat the following for t times

3. (a,b) « (a®-Inv(a® +b?d),b? - Inv(a® + b%d)) (lterative Normalization)

Iterative Normalization

x+2t-1
2{’

I. Scale down a, b € (0,2%) into (1 2) via mapping x

2. (a,b) < (— In v(a—+b d) g (ﬂ d)) (Initial Normalization)

Repeat the following for t times

3. (a,b) « (a®-Inv(a® +b?d),b? - Inv(a® + b%d)) (lterative Normalization)

t t
a’ b2

a2t 4p2t’ g2t p2t

The output = () ~ (a = max(a,b)?,b = max(a,b)?)

Iterative Normalization

-1
|. Scaledown a,b € (O,Z{]) into G,g) via mapping x x+22{,
2 (a,b) « (g - Inv (aTH?; d) ,g - Inv (azib; d)) (Initial Normalization)

~

Theorem 2 (Informal). For t = O@(a) and d = O(log), the error rate of

Repeat the following fo C0mP(a,b; d, t) compared to the true comp(a, b) is bounded by 27 for

1 3 . . max(ab) _
a,b € |=,=| satisfying — >1+ 27
\/

t t
a’ b2

a2t 4p2t’ g2t p2t

The output = () ~ (a = max(a,b)?,b = max(a,b)?)

Asymptotic Optimality
of our Method

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of |x| and ¥ g wo:
Theorem 3
’lim k- |l|x] — prllo,—1,1] = B for some constant f ~ 0.28

Theorem 4

k—1
14+€ 1—€

Ill—rgo 2 (:) o “X(O,OO) - qkf”oo,[—l,—E]U[E,l] - 2\/te

Py degree-k minimax approx. poly. of |x| over the interval [—1,1]

(i - degree-k minimax approx. poly. of x (g «)over the interval [—1,—€] U [¢, 1]

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of [x| and x(g,c0): To obtain
’ 0(27%) error:

Theorem 3

lim k - |||x| = pllco,(-1,17 = B for some constant § ~ 0.28 k> 0(2%
—00
Theorem 4
k= 0(a)
. for const €
lim E(li) 2| . “ e
kooN 2 M X(0,0) = Dkellog[-1,-elule1] ~ 2me | k2 O(a- 2%
fore=27¢%

Py degree-k minimax approx. poly. of |x| over the interval [—1,1]

(i - degree-k minimax approx. poly. of x (g «)over the interval [—1,—€] U [¢, 1]

Our Method vs. Minimax Approx.

Overall, to achieve 0(27%) error :

Minimax Approx. | Our Method
min /max O (24/2) O(x)
= W 1 W, @ l 2
comparison ‘ w(_) OVa)) (log™ o)
e=2"° O (Va - 2%/?) O (alog a)

Table 1. Complexity of our methods and minimax approximation method

Our Method vs. Minimax Approx.

Overall, to achieve 0(27%) error :

Minimax Approx. | Our Method
min /max O (24/2) O(x)
= W 1 W, @ l 2
comparison ‘ w(_) OVa)) (log™ o)
e=2"° O (Va - 2%/?) O (alog a)

Table 1. Complexity of our methods and minimax approximation method

Complexity > 0(Depth) = O(log Degree)

Approximation Theorems for Min/Max and Comp

Theoretical results on the polynomial approximation of [x| and x(g,c0): To obtain
’ 0(27%) error:

Theorem 3

lim k - |||x| = pllco,(-1,17 = B for some constant § ~ 0.28 k> 0(2%
—00
Theorem 4
k= 0(a)
. for const €
lim E(li) 2| . “ e
kooN 2 M X(0,0) = Dkellog[-1,-elule1] ~ 2me | k2 O(a- 2%
fore=27¢%

Py degree-k minimax approx. poly. of |x| over the interval [—1,1]

(i - degree-k minimax approx. poly. of x (g «)over the interval [—1,—€] U [¢, 1]

Our Method vs. Minimax Approx.

Overall, to achieve 0(27%) error :

Minimax Approx. | Our Method ~
min /max O (24/?) O(x) Optimal)
= w(l 5 @ (log” A
comparison ‘ w(_) “lva) 5 (log™) Quasi-
e =2"¢ O (Va- 20/) O (alog Optimal |

Table 1. Complexity of our methods and minimax approximation method

Complexity > 0(Depth) = O(log Degree)

Implementation Results

P

= Input: two 8-bit integers a, b (or fractional numbers in [0, I] w/ difference > 2-8)

= Qutput: max(a, b) with 8-bit precision

® Performance

VV VYV

HElib ~ 1ms 1800
Bit-wise 0
TFHE ~ 1 ms -
Ours Word-wise HEAAN 0.73 ms 216 <28

Ours: on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
HEAAN parameter (with 128-bit security): logN = 17, logQ = 930,4 = 192.2

Theoretical (# iterations): |3

Practical (# iterations): | |

Comparison

= |nput: two 8-bit integers a, b (or fractional numbers in [0, I] w/ difference > 2-8)
= Qutput: comp(a, b) with 8-bit precision

® Performance

Ours Word-wise 4.72 ms

» on Intel Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads) turned on.
» HEAAN parameters

v Comp: logN =17, logQ = 1870, logp = 30, A = 108.9
> # Iterations: (d,t) = (5,6)

Follow-up Study

= Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

Follow-up Study

= Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

= Can we achieve the optimal complexity for the comparison algorithm?

Follow-up Study

= Can we design a new framework for the polynomial approximation of min/max and
comparison operations?

= Can we achieve the optimal complexity for the comparison algorithm?

= Can we make a trade-off between depth and complexity?

Follow-up Study

= Can we design a new framework for the polynomial approximation of min/max and
comparison operations? v

= Can we achieve the optimal complexity for the comparison algorithm? v

= Can we make a trade-off between depth and complexity? v

) YES! ()

If interested, welcome to ia.cr/2019/1234

