
Real-HEAAN:
Approximate Homomorphic Encryption
over the Conjugate-invariant Ring

Duhyeong Kim Yongsoo Song
!Seoul National University (SNU)

"University of California, San Diego (UCSD)

Nov 28, 2018

1 2

¡ An approximate Homomorphic Encryption of which the plaintext space is (purely)
real number field

⟹ NO waste of the plaintext space for real-number arithmetic contrary to HEAAN

⟹ Prevent the potential problem of HEAAN

¡ Real-HEAAN supports twice more parallel computations compared to HEAAN
under the same security level, speed, and memory (with new NTT method)

Contributions of Real-HEAAN

An Approxmiate HE Scheme
HEAAN

HEAAN: Homomorphic Encryption for Arithmetic over Approximate Numbers

¡ Proposed by Cheon-Kim-Kim-Song in Asiacrypt’17

¡ Natural fit in real-world applications which require approximate computations of real numbers

¡ Abandoning exact computations, it gains a lot of advantages in efficiency:

Ctxt/Ptxt expansion ratio, # Ptxt slots, rounding operation (for free)

HEAAN: an Approximate HE scheme

¡ Secret Key: sk = (−#, 1) ∈ ()* where () = ,) - /(-/ + 1)

HEAAN: an Approximate HE scheme

¡ Secret Key: sk = (−#, 1) ∈ ()* where () = ,) - /(-/ + 1)

¡ Public Key: pk = 1, 2 = 1 ⋅ # + 4 ∈ ()*

HEAAN: an Approximate HE scheme

¡ Secret Key: sk = (−#, 1) ∈ ()* where () = ,) - /(-/ + 1)

¡ Public Key: pk = 1, 2 = 1 ⋅ # + 4 ∈ ()*

¡ Ciphertext of 5 ∈ (:= ,[-]/(-/ + 1): ct = 9 ⋅ 1 + 4:, 9 ⋅ 2 + 4* + 5 ∈ ()*

HEAAN: an Approximate HE scheme

¡ Secret Key: sk = (−#, 1) ∈ ()* where () = ,) - /(-/ + 1)

¡ Public Key: pk = 1, 2 = 1 ⋅ # + 4 ∈ ()*

¡ Ciphertext of 5 ∈ (:= ,[-]/(-/ + 1): ct = 9 ⋅ 1 + 4:, 9 ⋅ 2 + 4* + 5 ∈ ()*

⟨ct, sk⟩ = 5 + 4=(≈ 5)

HEAAN: an Approximate HE scheme

¡ Secret Key: sk = (−#, 1) ∈ ()* where () = ,) - /(-/ + 1)

¡ Public Key: pk = 1, 2 = 1 ⋅ # + 4 ∈ ()*

¡ Ciphertext of 5 ∈ (:= ,[-]/(-/ + 1): ct = 9 ⋅ 1 + 4:, 9 ⋅ 2 + 4* + 5 ∈ ()*

⟨ct, sk⟩ = 5 + 4=(≈ 5)

The Decryption Circuit!
(No Additional Modulo Operation)

HEAAN: an Approximate HE scheme

¡ Secret Key: sk = (−#, 1) ∈ ()* where () = ,) - /(-/ + 1)

¡ Public Key: pk = 1, 2 = 1 ⋅ # + 4 ∈ ()*

¡ Ciphertext of 5 ∈ (:= ,[-]/(-/ + 1): ct = 9 ⋅ 1 + 4:, 9 ⋅ 2 + 4* + 5 ∈ ()*

⟨ct, sk⟩ = 5 + 4=(≈ 5)

HEAAN: an Approximate HE scheme

Evaluation error + Decryption error

Then how are the complex numbers packed into an element of ! = #[%]/(%) + +)?

¡ Let - be an isomorphism (induced by canonical embedding) from C
/
0 to R[2]/(23 + 1)

(C and R denote complex/real number fields resp.)

¡ Given 3
5

complex numbers 67, 65, … , 6/
0

and a scaling factor Δ > 0,

=>? @+, … , @)/A; C = C ⋅ E @+,… , @)/A ≔ G

¡ The decoding process is very simple, just evaluating a half of m-th primitive root of unities

H>? I;C = +
C
⋅ J KLMN+

OPMQ)/A

¡ The scaling factor controls the Encoding/Decoding error

Encoding/Decoding of HEAAN

Then how are the complex numbers packed into an element of ! = #[%]/(%) + +)?

¡ Let - be an isomorphism (induced by canonical embedding) from C
/
0 to R[2]/(23 + 1)

(C and R denote complex/real number fields resp.)

¡ Given 3
5

complex numbers 67, 65, … , 6/
0

and a scaling factor Δ > 0,

=>? @+, … , @)/A; C = C ⋅ E @+,… , @)/A ≔ G

¡ The decoding process is very simple, just evaluating a half of m-th primitive root of unities

H>? I;C = +
C
⋅ J KLMN+

OPMQ)/A

¡ The scaling factor controls the Encoding/Decoding error

Encoding/Decoding of HEAAN

Then how are the complex numbers packed into an element of ! = #[%]/(%) + +)?

¡ Let - be an isomorphism (induced by canonical embedding) from C
/
0 to R[2]/(23 + 1)

(C and R denote complex/real number fields resp.)

¡ Given 3
5

complex numbers 67, 65, … , 6/
0

and a scaling factor Δ > 0,

=>? @+, … , @)/A; C = C ⋅ E @+,… , @)/A ≔ G

¡ The decoding process is very simple, just evaluating a half of m-th primitive roots of unities

H>? I;C = +
C
⋅ J KLMN+

OPMQ)/A

¡ The scaling factor controls the Encoding/Decoding error

Encoding/Decoding of HEAAN

iDASH Privacy & Security Workshop

¡ A Privacy & Security workshop holding competitions on secure genome analysis

¡ One of 3 tasks: secure genome analysis based on HE (e.g., Logistic Regression, GWAS,…)

Impact of HEAAN to real-world

iDASH Privacy & Security Workshop

¡ A Privacy & Security workshop holding competitions on secure genome analysis

¡ One of 3 tasks: secure genome analysis based on HE (e.g., Logistic Regression, GWAS,…)

¡ HEAAN-based solutions won the 1st place both on 2017 and 2018

¡ All the submitted solutions of HE-based secure GWAS computation used HEAAN!

Impact of HEAAN to real-world

Some Limitations of
HEAAN

1. The Waste of the Plaintext Space

¡ The Plaintext space of HEAAN is

R " /("% + 1) ≃ C
+
,

where - and . denote the real / complex number field respectively.

Limitations of HEAAN

1. The Waste of the Plaintext Space

¡ The Plaintext space of HEAAN is

R " /("% + 1) ≃ C
+
, ⊃ R

+
,

where . and / denote the real / complex number field respectively.

¡ In real-number applications, we only use the subring R
+
, of the plaintext space C

+
, !

Limitations of HEAAN

2. The Complex Explosion Problem

¡ In real-number applications, we only care about the real part of a plaintext.

¡ However, the complex part of a plaintext is “internally growing up” in every operation!

Limitations of HEAAN

2. The Complex Explosion Problem

¡ In real-number applications, we only care about the real part of a plaintext.

¡ However, the complex part of a plaintext is “internally growing up” in every operation!

! + #$ % + &$ = !% − #& + !& + #% $

Limitations of HEAAN

The new cplx part after a multiplication

2. The Complex Explosion Problem

¡ In real-number applications, we only care about the real part of a plaintext.

¡ However, the complex part of a plaintext is “internally growing up” in every operation!

! + #$ % + &$ = !% − #& + !& + #% $

Limitations of HEAAN

The new cplx part after a multiplication

Let !, % ≈ 2, and #, & ≈ 2- for . ≪ 0.

⟹ 2
3 ,

4
5 ≈ 2-6, & 3472535624 ≈ 2-6,78

2. The Complex Explosion Problem

¡ In real-number applications, we only care about the real part of a plaintext.

¡ However, the complex part of a plaintext is “internally growing up” in every operation!

! + #$ % + &$ = !% − #& + !& + #% $

Limitations of HEAAN

The new cplx part after a multiplication

Let !, % ≈ 2, and #, & ≈ 2- for . ≪ 0.

⟹ 2
3 ,

4
5 ≈ 2-6, & 3472535624 ≈ 2-6,78

¡ The complex part essentially explodes in large-depth circuit evaluations

Real-HEAAN

Use the subring of the cyclotomic ring!

¡ The plaintext space of original HEAAN

R " /("% + 1) ≃ C
+
,

The core idea of Real-HEAAN

Use the subring of the cyclotomic ring!

¡ The plaintext space of original HEAAN

R " /("% + 1) ≃ C
+
,

¡ The NEW plaintext space

R
+
,

The core idea of Real-HEAAN

∪

Use the subring of the cyclotomic ring!

¡ The plaintext space of original HEAAN

R " /("% + 1) ≃ C
+
,

¡ The NEW plaintext space

R " + "-. /("% + 1) ≃ R
+
,

Here "-. ≔ −"%-. denotes the inverse of " modulo "% + 1

The core idea of Real-HEAAN

∪∪

¡ Let !" ≔ $ % + %'(/(%+ + 1)

The core idea of Real-HEAAN

¡ Let !" ≔ $ % + %'(/(%+ + 1)

¡ Every element of Real-HEAAN is built over !′ instead of ! = Z % /(%+ + 1)
l Secret Key: sk = (−2, 1) ∈ !5"6 where !5" = $5 % + %'(/(%+ + 1)

l Public Key: pk = 7, 8 = 7 ⋅ 2 + : ∈ !5"6

l Ciphertext of ; ∈ !′: ct = < ⋅ 7 + :(, < ⋅ 8 + :6 + ; ∈ !5"6

The core idea of Real-HEAAN

Then how are the real numbers packed into an element of !′ = $[& + &()]/(&- +))?

¡ Let / be an isomorphism (induced by canonical embedding) from R
1
2 to R[3 + 3(4]/(35 + 1)

(Note that / is just a simple domain-restriction of 7 ⟹ / = 7|:1/2)

¡ Given 5

;
real numbers <4, <;, … , <1

2
and a scaling factor Δ > 0,

BCD E), … , E-/F; H = H ⋅ J E), … , E-/F ≔ L

¡ The decoding process is exactly same with HEAAN:

MCD N;H =
)

H
⋅ O PQRS)

TURV-/F

Encoding/Decoding of Real-HEAAN

Then how are the real numbers packed into an element of !′ = $[& + &()]/(&- +))?

¡ Let / be an isomorphism (induced by canonical embedding) from R
1
2 to R[3 + 3(4]/(35 + 1)

(Note that / is just a simple domain-restriction of 7 ⟹ / = 7|:1/2)

¡ Given 5

;
real numbers <4, <;, … , <1

2
and a scaling factor Δ > 0,

BCD E), … , E-/F; H = H ⋅ J E), … , E-/F ≔ L

¡ The decoding process is exactly same with HEAAN:

MCD N;H =
)

H
⋅ O PQRS)

TURV-/F

Encoding/Decoding of Real-HEAAN

Then how are the real numbers packed into an element of !′ = $[& + &()]/(&- +))?

¡ Let / be an isomorphism (induced by canonical embedding) from R
1
2 to R[3 + 3(4]/(35 + 1)

(Note that / is just a simple domain-restriction of 7 ⟹ / = 7|:1/2)

¡ Given 5

;
real numbers <4, <;, … , <1

2
and a scaling factor Δ > 0,

BCD E), … , E-/F; H = H ⋅ J E), … , E-/F ≔ L

¡ The decoding process is exactly same with HEAAN:

MCD N;H =
)

H
⋅ O PQRS)

TURV-/F

Encoding/Decoding of Real-HEAAN

Real-HEAAN vs HEAAN

Our Claim

Real-HEAAN over ! " + "$% /("() + 1) ≈ HEAAN over ! " /(") + 1)
w.r.t. Security, Ring operation speed, and memory

#Ptxt Slots: - vs -/2 ⟹ twice more Parallel Computations!

Real-HEAAN vs HEAAN

[Security Reduction] Real-HEAAN is IND-CPA secure under the hardness assumption of RLWE over
the number field ! ≔ Q[% + %'(]/(%,- + 1) (of which the extension degree !:1 = 3)

[Cryptanalysis] RLWE over the number field ! resists all known algebraic attacks on RLWE so that
the best known attack is essentially the general attacks on LWE of dimension 3

Security of Real-HEAAN

1.Memory

¡ Every element of !"′ = %"[' + ')*]/('./ + 1) is express as 2 ' = 23 + ∑56*/)* 25 ('5−'./)5) for 25 ∈ %"
⟹ : ⋅ log ? bits are required to store each element

2. Speed

¡ Number Theoretical Transform (NTT): mapping between %" ' /('@ − 1) ≃ %"@ with B C logC complexity

¡ Current best NTT method for !" = %"[']/('/ + 1) asymptotically requires B : log : complexity

¡ Our new NTT method for !"′ = %"[' + ')*]/('./ + 1) also requires B : log : complexity!

Efficiency of Real-HEAAN

§ Assume ! is a prime

Trivial Approach:

"#$ = &# ' + ')* /('-. + 1)
embedding &# ' /('8. − 1)

.

"#$ = &# ' + ')* /('-. + 1) &# ' /('8. − 1)

NTT method for "#$

Mod '-. + 1

NTT of dim :;

Inverse NTT of dim :;

(Computations over .)

§ Assume ! is a prime

Trivial Approach:

"#$ = &# ' + ')* /('-. + 1)
embedding &# ' /('8. − 1)

.

"#$ = &# ' + ')* /('-. + 1) &# ' /('8. − 1)

NTT method for "#$

Mod '-. + 1

NTT of dim :;

Inverse NTT of dim :;

(Computations over .)
Requires

NTT of dimension 4=!

Our NewApproach:

¡ Find a “simply computable” invertible linear transformation from !"# to $" % /(%(− 1)

!"#
,-./01 23./456708

9-:86;.6/
$" % /(%(− 1)

< % = <> + ∑ABC
(DC <A (%A−%E(DA) F<(%) = ∑AB>

(DC G<A%A

where H<> = <> and G<A = <A ⋅ JA + <(DA ⋅ JAD(for 1 ≤ L ≤ M − 1 (J: 4M-th prim. root of unity mod O)

¡ The inverse mapping is also simply computable with P(M) complexity

NTT method for !"#

Our New Approach:

!"# = %" & + &() /(&,- + 1)
012345 672389:;4<

=1><:?2:3 %" & /(&- − 1)

%"-

!"# = %" & + &() /(&,- + 1) %" & /(&A- − 1)

NTT method for !"#

Mod &,- + 1

NTT of dim B

Inverse NTT of dim CB

(Computations over %"-)

Our New Approach:

!"# = %" & + &() /(&,- + 1)
012345 672389:;4<

=1><:?2:3 %" & /(&- − 1)

%"-

!"# = %" & + &() /(&,- + 1) %" & /(&A- − 1)

NTT method for !"#

Mod &,- + 1

NTT of dim B

Inverse NTT of dim CB

(Computations over %"-)
Requires

NTT of dimension D!

Conclusion

¡ Real-HEAAN provides twice more parallel computations compared to the original HEAAN while
preserving the same level of security, ring operation speed, and memory.

¡ In other words, with the same number of parallel computations, Real-HEAAN is asymptotically twice
faster than the original HEAAN.

¡ Moreover, Real-HEAAN prevents the complex explosion problem of HEAAN.

¡ The generalization of our new NTT method would be very interesting open topic!

Homomorphic Encryption

Homomorphic Encryption (HE) :
An Encryption scheme which allows computations on encrypted data

Homomorphic Encryption

Homomorphic Encryption (HE) :
An arbitrary circuit over encrypted data can be evaluated w/o decryption!

Ciphering: Gentry's system allows encrypted data to be analyzed in the cloud. In
this example, we wish to add 1 and 2. The data is encrypted so that 1 becomes 33
and 2 becomes 54. The encrypted data is sent to the cloud and processed: the
result (87) can be downloaded from the cloud and decrypted to provide the final
answer (3). Credit: Steve Moors

Homomorphic Encryption

Selected as
10 Emerging Technologies
(MIT Technical Review 2011)

¡ Pros

- HE allows us to evaluate an arbitrary circuit (w/ bootstrapping)

- Data Leakage Prevention against hackers (w/o decryption key)

- Various Real-World Applications: Statistical Analysis, Searching, Machine Learning (over encrypted data)

¡ Cons

- Large Ciphertext/Plaintext Expansion ratio (40 ~ 1000 for FHE)

- Evaluation Speed: more than hundreds of times slower than one on unencrypted state

⟹ Individualized Optimization is going on for each operation!

Pros / Cons of HE

Scheme Plaintext Good Bad Library

Wordwise Encryption
- Brakerski-Gentry-Vaikuntanathan’12
- Gentry-Halevi-Smart’12a,b,c
- Brakerski’12, Fan-Vercauteren’12
- Halevi-Shoup’13,14,15

GF(pd) (Zp)
Polylog overhead
(Amortized time
& Expansion rate)

Bootstrapping
HElib
SEAL

…

Linear Error growth & Quad. Ctxt size
- Gentry-Sahai-Waters’13

Z, Z[X] ({0,1}) Toolkit for FHEW Inefficient -

Bitwise Encryption
- Ducas-Micciancio’15
- Chillotti-Gama-Georgieva-Izabachene’16,17

{0,1}, ({0,1}*)
Evaluation with
Bootstrapping

Latency

Amortized time
& Expansion rate

FHEW
TFHE

Various Lattice-based HE schemes

“Homomorphic Encryption” in ePrint and IEEE Xplore

Machine Learning: 11 (2018/233,202,139,074, 2017/979,715.
SSCI, IEEE Access, IEEE Journal, ICCV, SMARTCOMP)

Neural Network: 2 (2018/073, 2017/1114)
Genomic Data: 7 (2017/955,770,294,228. EUSIPCO, SMARTCOMP, IEEE Journal)
Health Data: 2 (IBM Journal, IEEE Journal)
Biometric Data: 2 (IEEE Access, IEEE Conference)
Energy Management: 3 (2017/1212. IEEE Big Data, IET Journal)
Big Data: 1 (ICBDA)
Advertising: 1 (WIFS)
Internet of Things: 1 (IWCMC)
Election: 1 (2017/166)

Application Researches on HE (2017 ~ Mar. 2018)

Idea 1: Every number contains an Approximation Error (from the unknown true value).

⟹ Consider the error " of a ciphertext # as a part of the approximation error

= Enc()) if #, sk (mod 1) =) + " ≈)

Simple Example:

1.234 ⇒ (scale-up by : = 10<) ⇒ 12,340.

⇒ (Encrypt) ⇒ ⟨#, sk⟩ ? = 12,344 ≈ 1.234 ×10< ⇒ (scale-down by :) ⇒ 1.234

The Construction of HEAAN

(=)∗)

The Construction of
HEAAN

Idea 1: Every number contains an Approximation Error (from the unknown true value).

⟹ Consider the error " of a ciphertext # as a part of the approximation error

= Enc()) if #, sk (mod 1) =) + " ≈)

Simple Example:

1.234 ⇒ (scale-up by : = 10<) ⇒ 12,340.

⇒ (Encrypt) ⇒ ⟨#, sk⟩ ? = 12,344 ≈ 1.234 ×10< ⇒ (scale-down by :) ⇒ 1.234

The Construction of HEAAN

(=)∗)

The Decryption Circuit!
(No Additional Modulo Operation)

Idea 2: Approximate Rounding (ReScaling; RS) for (almost) Free!

- Assume that the secret key sk has sufficiently small coefficients.

- For a ciphertext # of the message $, define #% = ⌈()* ⋅ #⌋.
- Then, it holds that

#, sk mod 1 = $∗

⟹ #′, sk mod p)*1 ≈ ()*$∗ (an approximate rounding of $∗)

- Rounding of a ciphertext directly derives an approximate rounding of the message!

The Construction of HEAAN

Q1)What is the main problem of previous wordwise HEs in computation of real numbers?

Real Number Computations in HEs

Q1)What is the main problem of previous wordwise HEs in computation of real numbers?

Ans)The exponential growth of the plaintext size (millions of bits after 20-depth multiplications)

¡ Ctxt size ≈ " 2$, or other new techniques are required (% : level parameter)

¡ One solution is to extract MSBs and store them, but very expensive!

Real Number Computations in HEs

Q2) How about bitwise HE schemes?

Real Number Computations in HEs

Q2) How about bitwise HE schemes?

Ans)Too many gates required to represent an operation between large-precision numbers!
¡ 0.06 sec for (2-to-1) gate, 10 sec for (6-to-6) circuit.

¡ 75 gates for an operation between 4-bit strings.

¡ Then, how many gates for 16-bit / 32-bit precision multiplication?

Real Number Computations in HEs

Q3) Then, how does it work in HEAAN?

Real Number Computations in HEAAN

Q3) Then, how does it work in HEAAN?

¡ Imitating the procedure of approximate arithmetic on computer system

¡ No additional cost for the “rounding”(RS) process!

¡ Ctxt size ≈ "($) ($: level parameter), since HEAAN only stores most significant bits

Real Number Computations in HEAAN

