

A Practical Post-Quantum Public-Key Encryption from LWE and LWR

JUNG HEE CHEON, DUHYEONG KIM, JOOHEE LEE, YONGSOO SONG

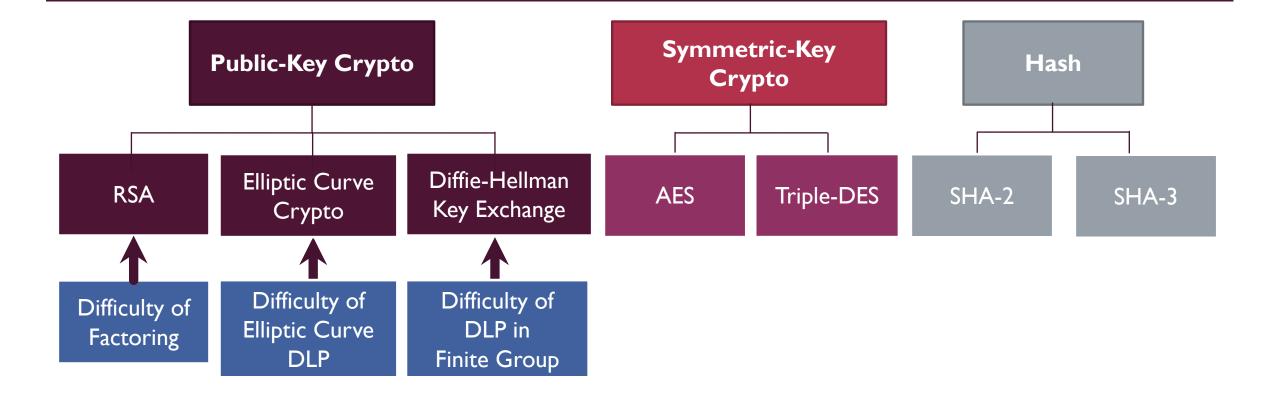
SEOUL NATIONAL UNIVERSITY

2018.09.05

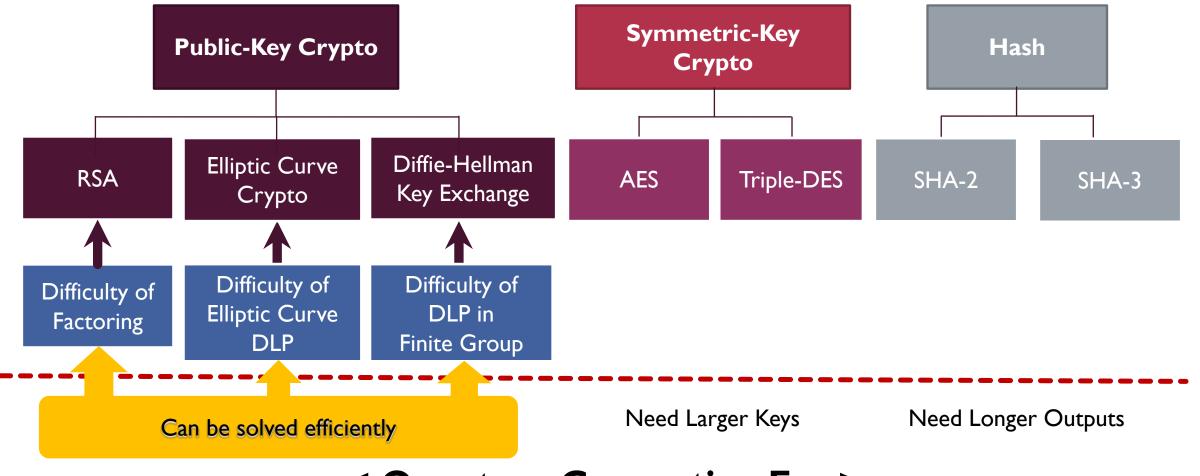
Overview of Lizard

- [Post-Quantum] One of the 64 Round I (accepted) Submissions to NIST's PQC Standardization
- [Novelty] the first LWE + LWR based Public-Key Encryption
- [Design Rationale] Faster and Simpler!

Uprise of Post-Quantum Cryptography



Uprise of Post-Quantum Cryptography



< Quantum Computing Era >

Uprise of Post-Quantum Cryptography

NSA is transitioning to PQC in the "not too distant" future

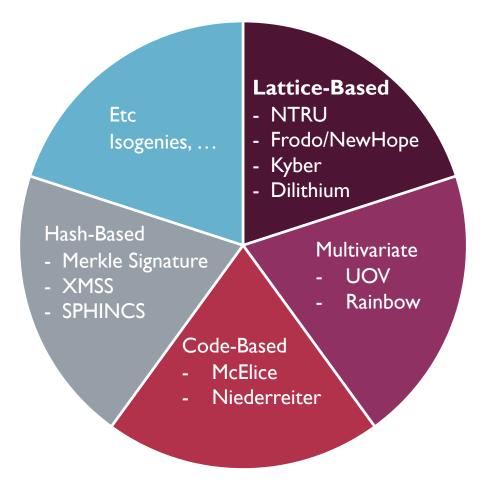
http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

• NIST launched PQC Standardization Project <u>http://csrc.nist.gov/groups/ST/post-quantum-crypto</u>

- NIST
- > To standardize Post-Quantum public-key crypto : Encryption / Signature / Key Encapsulation
- > Timeline

Aug 2016	Formal Call for Proposals	
Nov 2017	Deadline for Submissions	
Apr 2018	I st NIST PQC Workshop	
Aug 2019	2 nd NIST PQC Workshop (be expected)	

Lattice-based Cyptosystem



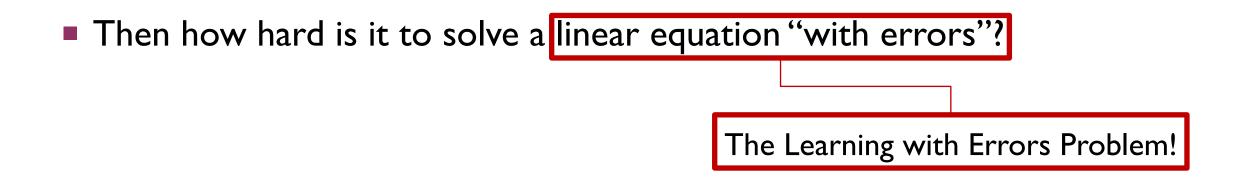
- Especially, Lattice-based cryptosystem gains increasing attentions
 - Security based on the worst-case/average-case reductions from lattice hard problems (SVP, SIVP,...)
 - Fast implementation
 - Versatility in many applications: Homomorphic Encryption, Functional Encryption...
 - 26 of 64 Round I Submissions to NIST's PQC standardization

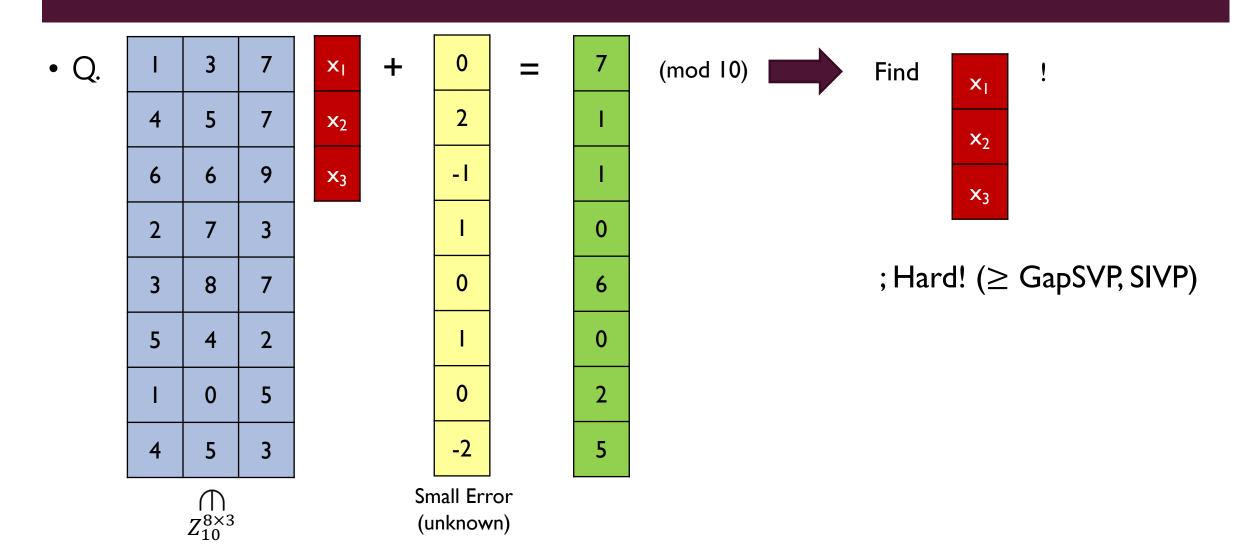
LWE-based PKEs

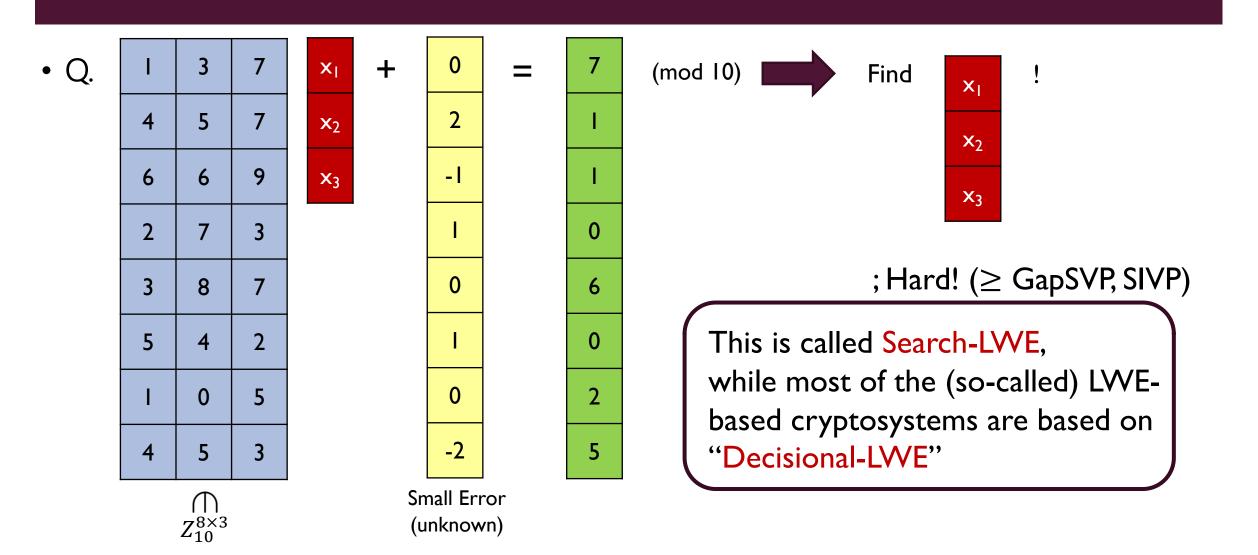
Solving a linear equation system is easy! (e.g. Gaussian elimination..)

Then how hard is it to solve a linear equation "with errors"?

Solving a linear equation system is easy! (e.g. Gaussian elimination..)







Decisional-LWE

• Q. Distinguish

3	7	
5	7	
6	9	
7	3	
8	7	,
4	2	
0	5	
5	3	
	5 6 7 8 4 0	5 7 6 9 7 3 8 7 4 2 0 5

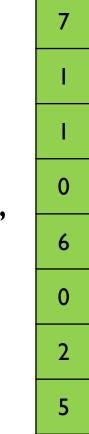
from a sample uniform randomly chosen in $Z_{10}^{8\times4}$!

; Hard! (\geq GapSVP, SIVP)

Decisional-LWE

• Q. Distinguish

I	3	7	
4	5	7	
6	6	9	
2	7	3	
3	8	7	,
5	4	2	
Ι	0	5	
4	5	3	

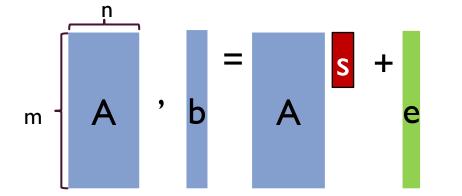


from a sample uniform randomly chosen in $Z_{10}^{8\times4}$!

; Hard! (\geq GapSVP, SIVP)

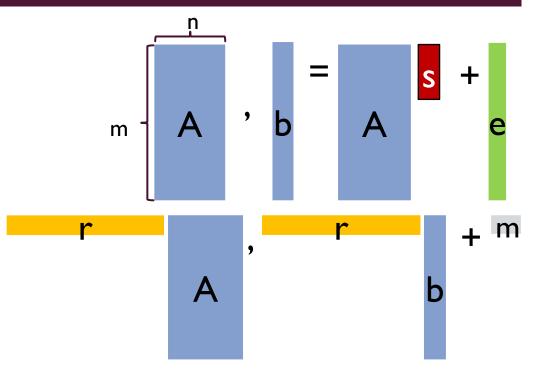
From now on, The term "LWE" always denotes the Decisional-LWE problem

•
$$\operatorname{pk} = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$



•
$$pk = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$

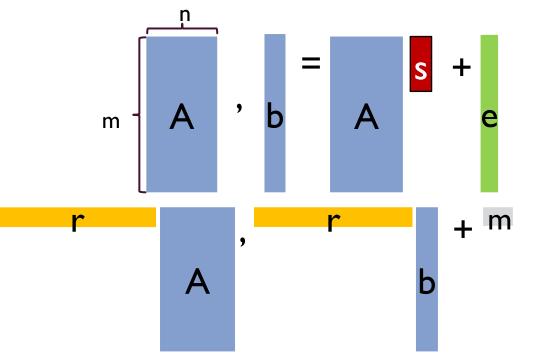
•
$$\operatorname{Ctxt} = \left(\vec{r}^t \cdot A, \vec{r}^t \cdot \vec{b} + \left\lfloor \left(\frac{q}{2} \right) \cdot m \right\rfloor \right) \in Z_q^n \times Z_q$$



•
$$\mathrm{pk} = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$

•
$$\operatorname{Ctxt} = \left(\vec{r}^t \cdot A, \vec{r}^t \cdot \vec{b} + \left\lfloor \left(\frac{q}{2}\right) \cdot m \right\rfloor \right) \in Z_q^n \times Z_q$$

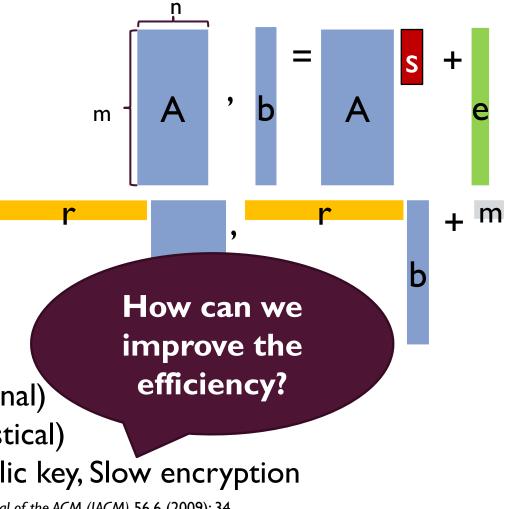
- $pk \approx uniform by LWE assumption (Computational)$
- Ctxt \approx uniform by Leftover Hash Lemma (Statistical) \Rightarrow Too large $m = \omega(n \log q) \Rightarrow$ Too Large public key, Slow encryption



•
$$\operatorname{pk} = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$

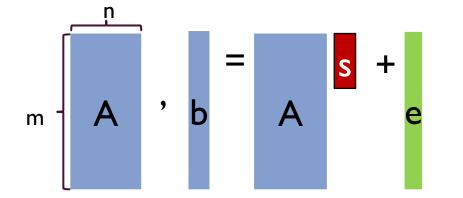
•
$$\operatorname{Ctxt} = \left(\vec{r}^t \cdot A, \vec{r}^t \cdot \vec{b} + \left\lfloor \left(\frac{q}{2}\right) \cdot m \right\rfloor \right) \in Z_q^n \times Z_q$$

- $pk \approx uniform by LWE assumption (Computational)$
- Ctxt \approx uniform by Leftover Hash Lemma (Statistical) \Rightarrow Too large $m = \omega(n \log q) \Rightarrow$ Too Large public key, Slow encryption



Lindner-Peikert Scheme [LPII]

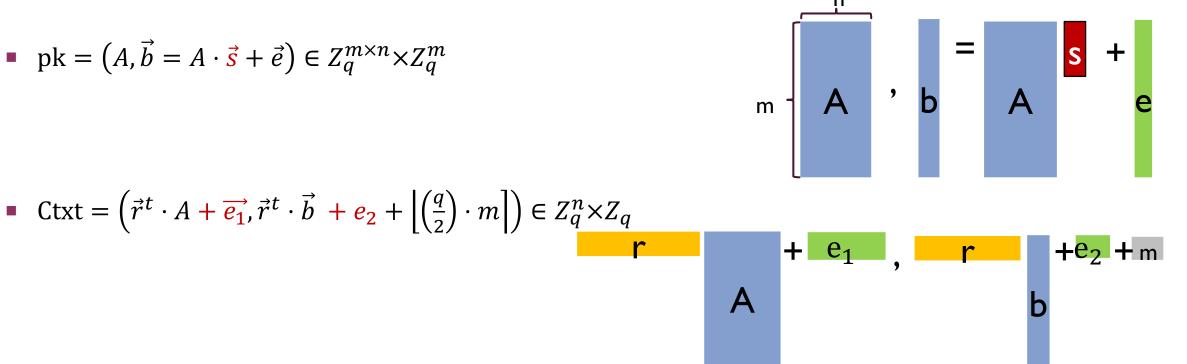
•
$$\operatorname{pk} = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$



[LPII] R. Lindner, and C. Peikert. "Better key sizes (and attacks) for LWE-based encryption." Cryptographers' Track at the RSA Conference. Springer, Berlin, Heidelberg, 2011.

Lindner-Peikert Scheme [LP11]

•
$$\mathrm{pk} = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$



[LP11] R. Lindner, and C. Peikert. "Better key sizes (and attacks) for LWE-based encryption." Cryptographers' Track at the RSA Conference. Springer, Berlin, Heidelberg, 2011.

Lindner-Peikert Scheme [LPII]

•
$$\operatorname{pk} = (A, \vec{b} = A \cdot \vec{s} + \vec{e}) \in Z_q^{m \times n} \times Z_q^m$$

• Ctxt =
$$\left(\vec{r}^t \cdot A + \vec{e_1}, \vec{r}^t \cdot \vec{b} + e_2 + \left\lfloor \left(\frac{q}{2}\right) \cdot m \right\rfloor \right) \in Z_q^n \times Z_q$$

- $pk \approx uniform by LWE assumption (Computational)$
- Ctxt \approx uniform by Leftover Hash Lemma LWE assumption (Computational) \Rightarrow Smaller parameter *m*!

[LP11] R. Lindner, and C. Peikert. "Better key sizes (and attacks) for LWE-based encryption." Cryptographers' Track at the RSA Conference. Springer, Berlin, Heidelberg, 2011.

 $\begin{bmatrix} A \\ A \end{bmatrix} = \begin{bmatrix} S \\ A \end{bmatrix} + \begin{bmatrix} B \\ A \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} + \begin{bmatrix} B$

+<mark>e</mark>2 + m

+ e₁,

Lindner-Peikert Scheme [LPII]

By substituting Leftover Hash Lemma by the LWE assumption, Discrete Gaussian Sampling is required in every encryption stage.

- How to deal with Discrete Gaussian Sampling?
- I. High-bit precision / exact Sampling [GPV08, BLP+13] \Rightarrow rather slow performance
- 2. Inverse Sampling Method via look-up table [BCD+16]

 \Rightarrow much faster! But it still consumes a substantial portion of the encryption phase.

[GPV08] Gentry, Craig, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions." Proceedings of the fortieth annual ACM symposium on Theory of computing. ACM, 2008.

[BLP+13] Brakerski, Zvika, et al. "Classical hardness of learning with errors." Proceedings of the forty-fifth annual ACM symposium on Theory of computing. ACM, 2013. [BCD+16] Bos, Joppe, et al. "Frodo: Take off the ring! practical, quantum-secure key exchange from LWE." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

Learning with Rounding (LWR)

- Proposed by Banerjee-Peikert-Rosen in Eurocrypt'12 [BPR12]
- Instead of adding an error in LWE, just discard some least significant bits —"derandomized" LWE

Learning with Rounding (LWR)

- Proposed by Banerjee-Peikert-Rosen in Eurocrypt'12 [BPR12]
- The LWR problem is to distinguish *m* samples

$$(\begin{array}{c} \hline a_i \\ \hline a_i \\ \hline \end{array}, \begin{array}{c} b_i \\ \hline p \\ \hline q \\ \hline \end{array} \begin{array}{c} a_i \\ \hline s \\ \hline \end{array} \end{array}) \in Z_q^n \times Z_p$$

from m samples uniformly chosen in $Z_q^n \times Z_p$

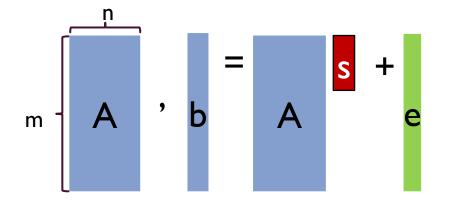
[[]BPR12] Banerjee, Abhishek, Chris Peikert, and Alon Rosen. "Pseudorandom functions and lattices." Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012.

Hardness of LWR

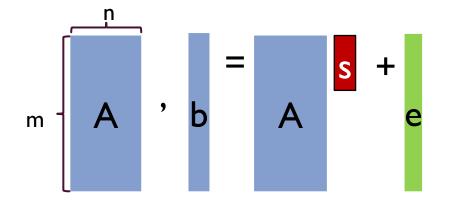
- Researches on the hardness of LWR, which commonly aim to show $LWE \leq LWR$
 - [BPR12]: a super-polynomial modulus $q \ge p \cdot B \cdot n^{\omega(1)}$ where B is an upper bound of LWE errors
 - [AKPW13]: a polynomial modulus and modulus-to-error ratio
 - [BGM+16]: more general modulus, a bounded number of samples $m = O(\frac{q}{Bp})$

[BPR12] Banerjee, Abhishek, Chris Peikert, and Alon Rosen. "Pseudorandom functions and lattices." Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012.
[AKPW13] Alwen, Joël, et al. "Learning with rounding, revisited." Advances in Cryptology–CRYPTO 2013. Springer, Berlin, Heidelberg, 2013. 57-74.
[BGM+16] Bogdanov, Andrej, et al. "On the hardness of learning with rounding over small modulus." Theory of Cryptography Conference. Springer, Berlin, Heidelberg, 2016.

• **KeyGen**: the same with other LWE-based PKEs



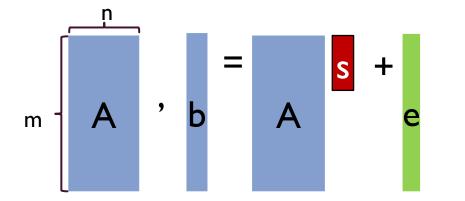
• **KeyGen**: the same with other LWE-based PKEs



Encryption: Take a rounding instead of adding some errors

$$\mathsf{Ctxt} = \left(\begin{bmatrix} \frac{p}{q} \cdot \mathbf{r} \\ q \cdot \mathbf{r} \end{bmatrix} \right) \left[\frac{p}{q} \cdot \mathbf{r} \\ \mathbf{p} \\ \mathbf{p}$$

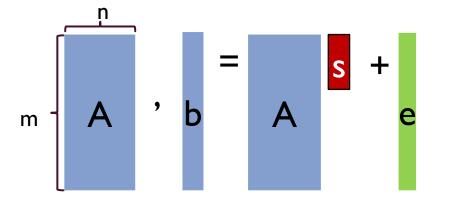
• **KeyGen**: the same with other LWE-based PKEs



Encryption: Take a rounding instead of adding some errors

Ctxt =
$$\left(\begin{bmatrix} \frac{p}{q} \cdot \mathbf{r} \\ \frac{p}{q} \cdot \mathbf{r} \end{bmatrix} \right)$$
, $\begin{bmatrix} \frac{p}{q} \cdot \mathbf{r} \\ \frac{p}{q} \cdot \mathbf{r} \end{bmatrix} + \begin{bmatrix} \frac{p}{2} \cdot m \end{bmatrix} \right)$
Decryption: Compute and Output $\left[\left(\frac{2}{p} \right) \cdot (c_2 - \vec{c_1} \cdot \vec{s}) \right]$

• **KeyGen**: the same with other LWE-based PKEs



Encryption: Take a rounding instead of adding some errors

$$Ctxt = \left(\begin{bmatrix} \frac{p}{q} \cdot & \mathbf{r} \\ \frac{p}{q} \cdot & \mathbf{A} \end{bmatrix} \right), \begin{bmatrix} \frac{p}{q} \cdot & \mathbf{r} \\ \frac{p}{q} \cdot & \mathbf{b} \end{bmatrix} + \begin{bmatrix} \frac{p}{2} \cdot m \end{bmatrix} \right)$$

Decryption: Compute and Output $\left[\left(\frac{2}{p} \right) \cdot (c_2 - \vec{c_1} \cdot \vec{s}) \right]$

Parameter Choices

- In practice, the performance highly depends on the choice of secret distributions and parameters
- **Our Choices** for Efficiency:
 - The secret key *s* is chosen as a binary vector
 - The ephemeral secret vector r is chosen as a sparse binary vector
 - \Rightarrow Faster computation of $(\vec{r}^t \cdot A, \vec{r}^t \cdot \vec{b})$
 - Moduli q and p are chosen to be power-of-two

 \Rightarrow Simpler rounding process done by just adding a constant and then right-shift (almost for free)

(e.g.,
$$\left\lfloor \left(\frac{p}{q}\right) \cdot x \right\rfloor = \left\lfloor \left(\frac{p}{q}\right) \cdot \left(x + \frac{q}{2p}\right) \right\rfloor$$
)

Caution! - How many LSBs can be discarded?

- (Correctness) If we cut a large proportion
- (Security) If we cut too small proportion

- , the correctness will not hold. 🙁
- , the security of a message will not hold. 🙁
- \Rightarrow We choose a proper rounding modulus "p" to satisfy both security and correctness.

Features of Lizard

Design Rationale; boost up the Encryption speed

- Encrypting w/o Discrete Gaussian Sampling
- Use sparse binary ephemeral secret \vec{r} .
- Feasible parameters
 - "Slam dunk"; achieve all the negligible dec.fail.rate & conservative quantum security & better efficiency
 - Parameters were chosen by a core-SVP hardness methodology proposed in NewHope [ADPS16] considering all best known attacks (dual attack, primal attack)

Smaller Ciphertext size

- By discarding some LSBs, the ciphertext size is reduced with the factor $\frac{\log p}{\log q}$

[ADPS16] Alkim, Erdem, et al. "Post-quantum Key Exchange-A New Hope." USENIX Security Symposium. Vol. 2016. 2016.

Implementation

CCALizard: IND-CCA variant of Lizard

- Apply a variant of Fujisaki-Okamoto CCA conversion [HHK17] (HHK conversion : IND-CPA PKE \Rightarrow IND-CCA KEM)
- IND-CCA PKE = IND-CCA KEM + One-Time Pad

⇒ CCALizard satisfies IND-CCA security under Quantum Random Oracle Model

[HHK17] Hofheinz, Dennis, Kathrin Hövelmanns, and Eike Kiltz. "A modular analysis of the Fujisaki-Okamoto transformation." Theory of Cryptography Conference. Springer, Cham, 2017.

Performance and Comparison of PKEs

• Encrypting a 256-bit plaintext with quantum 128-bit security

Scheme	Enc	Dec	Ctxt (bytes)
RSA-3072	116,894	8,776,864	75
NTRU EES743EPI	102,008	109,582	980
CCA-CHK+	≈ 813,800	≈ 785,200	804
CCALizard	32,272	47,125	955

[Table] Performance of our Enc/Dec procedures in cycles

- > Our schemes were measured on an Intel Xeon E5- 2620 CPU running at 2.10GHz w/o Turbo Boost and Multithreading.
- CCA-CHK+ : [CHK+16], measured on Macbook pro Intel core i5 running at 2.60GHz
- RSA, NTRU schemes: measured on a PC with Intel quad-core i5-6600 running at 3.3 GHz processor, drawn from ECRYPT Benchmarking of Crypto Systems.
- RSA does not achieve a quantum 128-bit security.
- CCA-CHK+ achieves only a quantum 58-bit security w.r.t. a core-SVP hardness methodology

