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Lizard:
A Practical Post-Quantum Public-Key Encryption 
from LWE and LWR



¡ [Post-Quantum] One of the 64 Round1 (accepted) Submissions to NIST’s PQC Standardization

¡ [Novelty] the first LWE + LWR based Public-Key Encryption

¡ [Design Rationale] Faster and Simpler!

Overview of Lizard
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Uprise of Post-Quantum Cryptography

¡ NSA is transitioning to PQC in the “not too distant” future  
http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

¡ NIST launched PQC Standardization Project                            
http://csrc.nist.gov/groups/ST/post-quantum-crypto
Ø To standardize Post-Quantum public-key crypto : Encryption / Signature / Key Encapsulation

Ø Timeline
Aug 2016 Formal Call for Proposals

Nov 2017 Deadline for Submissions

Apr 2018 1st NIST PQC Workshop

Aug 2019 2nd NIST PQC Workshop (be expected)

http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
http://csrc.nist.gov/groups/ST/post-quantum-crypto


Lattice-based Cyptosystem

Code-Based
- McElice
- Niederreiter

Multivariate
- UOV 
- Rainbow

Lattice-Based
- NTRU
- Frodo/NewHope
- Kyber
- Dilithium

Etc
Isogenies, …

Hash-Based
- Merkle Signature
- XMSS
- SPHINCS

§ Especially, Lattice-based cryptosystem 
gains increasing attentions

Ø Security based on the worst-case/average-case 

reductions from lattice hard problems (SVP, SIVP,…)

Ø Fast implementation

Ø Versatility in many applications: Homomorphic 

Encryption, Functional Encryption…

Ø 26 of 64 Round1 Submissions to NIST‘s PQC 

standardization



LWE-based PKEs
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¡ Solving a linear equation system is easy! (e.g. Gaussian elimination..)

¡ Then how hard is it to solve a linear equation “with errors”?

The Learning with Errors Problem!
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This is called Search-LWE,
while most of the (so-called) LWE-
based cryptosystems are based on 
“Decisional-LWE”

; Hard! (≥ GapSVP, SIVP)



Decisional-LWE
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From now on, 
The term “LWE” always denotes 
the Decisional-LWE problem

; Hard! (≥ GapSVP, SIVP)
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How can we 
improve the 
efficiency?

[Reg05] Regev, Oded. "On lattices, learning with errors, random linear codes, and cryptography." Journal of the ACM (JACM) 56.6 (2009): 34.
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Lindner-Peikert Scheme [LP11]

¡ By substituting Leftover Hash Lemma by the LWE assumption, Discrete Gaussian
Sampling is required in every encryption stage.

¡ How to deal with Discrete Gaussian Sampling?

1. High-bit precision / exact Sampling [GPV08, BLP+13] ⟹ rather slow performance

2. Inverse Sampling Method via look-up table [BCD+16]

⟹ much faster! But it still consumes a substantial portion of the encryption phase.

[GPV08] Gentry, Craig, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions." Proceedings of the fortieth annual ACM 
symposium on Theory of computing. ACM, 2008.
[BLP+13] Brakerski, Zvika, et al. "Classical hardness of learning with errors." Proceedings of the forty-fifth annual ACM symposium on Theory of computing. ACM, 2013.
[BCD+16] Bos, Joppe, et al. "Frodo: Take off the ring! practical, quantum-secure key exchange from LWE." Proceedings of the 2016 ACM SIGSAC Conference on Computer and 
Communications Security. ACM, 2016.



LWE + LWR based PKE Lizard



¡ Proposed by Banerjee-Peikert-Rosen in Eurocrypt’12 [BPR12]

¡ Instead of adding an error in LWE, just discard some least significant bits

⟹“derandomized” LWE

Learning with Rounding (LWR)



¡ Proposed by Banerjee-Peikert-Rosen in Eurocrypt’12 [BPR12]

¡ Instead of adding an error in LWE, just discard some least significant bits

⟹“derandomized” LWE

¡ The LWR problem is to distinguish " samples

(                                               )∈ $%&×$(

from " samples uniformly chosen in $%&×$(
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[BPR12] Banerjee, Abhishek, Chris Peikert, and Alon Rosen. "Pseudorandom functions and lattices." Annual International Conference on the Theory and Applications of 
Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012.



¡ Researches on the hardness of LWR, which commonly aim to show LWE ≤ LWR

- [BPR12]: a super-polynomial modulus " ≥ $ ⋅ & ⋅ '((*) where & is an upper bound of
LWE errors

- [AKPW13]: a polynomial modulus and modulus-to-error ratio

- [BGM+16]: more general modulus, a bounded number of samples , = .( /01)

Hardness of LWR

[BPR12] Banerjee, Abhishek, Chris Peikert, and Alon Rosen. "Pseudorandom functions and lattices." Annual International Conference on the Theory and Applications of 
Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012.
[AKPW13] Alwen, Joël, et al. "Learning with rounding, revisited." Advances in Cryptology–CRYPTO 2013. Springer, Berlin, Heidelberg, 2013. 57-74.
[BGM+16] Bogdanov, Andrej, et al. "On the hardness of learning with rounding over small modulus." Theory of Cryptography Conference. Springer, Berlin, Heidelberg, 2016.
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¡ In practice, the performance highly depends on the choice of secret distributions and parameters

¡ Our Choices for Efficiency:

- The secret key ! is chosen as a binary vector

- The ephemeral secret vector " is chosen as a sparse binary vector

⟹ Faster computation of ("⃗& ⋅ (, "⃗& ⋅ *)
- Moduli , and - are chosen to be power-of-two

⟹ Simpler rounding process done by just adding a constant and then right-shift (almost for free)

(e.g. , .
/ ⋅ 0 = .

/ ⋅ 0 + /
3. ) 

Parameter Choices



Caution! - How many LSBs can be discarded?

§ (Correctness) If we cut a large proportion               ,  the correctness will not hold. 

§ (Security) If we cut too small proportion              ,  the security of a message will not hold.

⟹We choose a proper rounding modulus “p” to satisfy both security and correctness.



¡ Design Rationale; boost up the Encryption speed

- Encrypting w/o Discrete Gaussian Sampling

- Use sparse binary ephemeral secret "⃗.
¡ Feasible parameters

- “Slam dunk”; achieve all the negligible dec.fail.rate & conservative quantum security & better
efficiency

- Parameters were chosen by a core-SVP hardness methodology proposed in NewHope [ADPS16]
considering all best known attacks (dual attack, primal attack)

¡ Smaller Ciphertext size

- By discarding some LSBs, the ciphertext size is reduced with the factor #$% &
#$% '

Features of Lizard

[ADPS16] Alkim, Erdem, et al. "Post-quantum Key Exchange-A New Hope." USENIX Security Symposium. Vol. 2016. 2016.



Implementation



¡ Apply a variant of Fujisaki-Okamoto CCA conversion [HHK17]

(HHK conversion : IND-CPA PKE ⟹ IND-CCA KEM)

¡ IND-CCA PKE = IND-CCA KEM + One-Time Pad

⟹ CCALizard satisfies IND-CCA security under Quantum Random Oracle Model 

CCALizard: IND-CCA variant of Lizard

[HHK17] Hofheinz, Dennis, Kathrin Hövelmanns, and Eike Kiltz. "A modular analysis of the Fujisaki-Okamoto transformation." Theory of Cryptography Conference. Springer, Cham, 2017.



Performance and Comparison of PKEs

Scheme Enc Dec Ctxt (bytes)

RSA-3072 116,894 8,776,864 75

NTRU EES743EP1 102,008 109,582 980

CCA-CHK+ ≈ 813,800 ≈ 785,200 804

CCALizard 32,272 47,125 955

[Table] Performance of our Enc/Dec procedures in cycles

Ø Our schemes were measured on an Intel Xeon E5- 2620 CPU running at 2.10GHz w/o Turbo Boost and Multithreading.
Ø CCA-CHK+ : [CHK+16], measured on Macbook pro Intel core i5 running at 2.60GHz 
Ø RSA, NTRU schemes: measured on a PC with Intel quad-core i5-6600 running at 3.3 GHz processor, drawn from ECRYPT 

Benchmarking of Crypto Systems. 
Ø RSA does not achieve a quantum 128-bit security.
Ø CCA-CHK+ achieves only a quantum 58-bit security w.r.t. a core-SVP hardness methodology

• Encrypting a 256-bit plaintext with quantum 128-bit security




