
DUHYEONG KIM
SEOUL NATIONAL UNIVERSITY

2018. 09.05

Lizard:
A Practical Post-Quantum Public-Key Encryption
from LWE and LWR

¡ [Post-Quantum] One of the 64 Round1 (accepted) Submissions to NIST’s PQC Standardization

¡ [Novelty] the first LWE + LWR based Public-Key Encryption

¡ [Design Rationale] Faster and Simpler!

Overview of Lizard

Uprise of Post-Quantum Cryptography

Public-Key Crypto Symmetric-Key
Crypto Hash

Elliptic Curve
Crypto

RSA Triple-DESAES
Diffie-Hellman
Key Exchange SHA-2

Difficulty of
DLP in

Finite Group

Difficulty of
Elliptic Curve

DLP

Difficulty of
Factoring

SHA-3

Uprise of Post-Quantum Cryptography

Public-Key Crypto Symmetric-Key
Crypto Hash

Elliptic Curve
Crypto

RSA Triple-DESAES
Diffie-Hellman
Key Exchange SHA-2

Difficulty of
DLP in

Finite Group

Difficulty of
Elliptic Curve

DLP

Difficulty of
Factoring

Can be solved efficiently Need Longer OutputsNeed Larger Keys

< Quantum Computing Era >

SHA-3

Uprise of Post-Quantum Cryptography

¡ NSA is transitioning to PQC in the “not too distant” future
http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

¡ NIST launched PQC Standardization Project
http://csrc.nist.gov/groups/ST/post-quantum-crypto
Ø To standardize Post-Quantum public-key crypto : Encryption / Signature / Key Encapsulation

Ø Timeline
Aug 2016 Formal Call for Proposals

Nov 2017 Deadline for Submissions

Apr 2018 1st NIST PQC Workshop

Aug 2019 2nd NIST PQC Workshop (be expected)

http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
http://csrc.nist.gov/groups/ST/post-quantum-crypto

Lattice-based Cyptosystem

Code-Based
- McElice
- Niederreiter

Multivariate
- UOV
- Rainbow

Lattice-Based
- NTRU
- Frodo/NewHope
- Kyber
- Dilithium

Etc
Isogenies, …

Hash-Based
- Merkle Signature
- XMSS
- SPHINCS

§ Especially, Lattice-based cryptosystem
gains increasing attentions

Ø Security based on the worst-case/average-case

reductions from lattice hard problems (SVP, SIVP,…)

Ø Fast implementation

Ø Versatility in many applications: Homomorphic

Encryption, Functional Encryption…

Ø 26 of 64 Round1 Submissions to NIST‘s PQC

standardization

LWE-based PKEs

Learning with Errors (LWE)

¡ Solving a linear equation system is easy! (e.g. Gaussian elimination..)

¡ Then how hard is it to solve a linear equation “with errors”?

Learning with Errors (LWE)

¡ Solving a linear equation system is easy! (e.g. Gaussian elimination..)

¡ Then how hard is it to solve a linear equation “with errors”?

The Learning with Errors Problem!

Learning with Errors (LWE)

1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

1

1

0

6

0

2

5

x1

x2

x3

• Q. = Find

; Hard! (≥ GapSVP, SIVP)

x1

x2

x3

!+ 0

2

-1

1

0

1

0

-2

(mod 10)

Small Error
(unknown)"#$%×'

Learning with Errors (LWE)

1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

1

1

0

6

0

2

5

x1

x2

x3

• Q. = Find x1

x2

x3

!+ 0

2

-1

1

0

1

0

-2

(mod 10)

Small Error
(unknown)!"#$×&

This is called Search-LWE,
while most of the (so-called) LWE-
based cryptosystems are based on
“Decisional-LWE”

; Hard! (≥ GapSVP, SIVP)

Decisional-LWE

1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

1

1

0

6

0

2

5

• Q. Distinguish from a sample uniform randomly
chosen in !"#$×&!

; Hard! (≥ GapSVP, SIVP)

,

Decisional-LWE

1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

1

1

0

6

0

2

5

• Q. Distinguish from a sample uniform randomly
chosen in !"#$×&!

,

From now on,
The term “LWE” always denotes
the Decisional-LWE problem

; Hard! (≥ GapSVP, SIVP)

Regev Scheme [Reg05]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./ s
b

=
A

+
e, A

n

m

[Reg05] Regev, Oded. "On lattices, learning with errors, random linear codes, and cryptography." Journal of the ACM (JACM) 56.6 (2009): 34.

Regev Scheme [Reg05]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./

¡ Ctxt = 5⃗6 ⋅ $, 5⃗6 ⋅ & + .
7 ⋅ 8 ∈ -.1×-.

s
b

=
A

+
e, A

n

m

A
,r

b

r + m

[Reg05] Regev, Oded. "On lattices, learning with errors, random linear codes, and cryptography." Journal of the ACM (JACM) 56.6 (2009): 34.

Regev Scheme [Reg05]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./

¡ Ctxt = 5⃗6 ⋅ $, 5⃗6 ⋅ & + .
7 ⋅ 8 ∈ -.1×-.

s
b

=
A

+
e, A

n

m

• pk ≈ uniform by LWE assumption (Computational)
• Ctxt ≈ uniform by Leftover Hash Lemma (Statistical)

⟹Too large 8 = B(D log G) ⟹Too Large public key, Slow encryption

A
,r

b

r + m

[Reg05] Regev, Oded. "On lattices, learning with errors, random linear codes, and cryptography." Journal of the ACM (JACM) 56.6 (2009): 34.

Regev Scheme [Reg05]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./

¡ Ctxt = 5⃗6 ⋅ $, 5⃗6 ⋅ & + .
7 ⋅ 8 ∈ -.1×-.

s
b

=
A

+
e, A

n

m

• pk ≈ uniform by LWE assumption (Computational)
• Ctxt ≈ uniform by Leftover Hash Lemma (Statistical)

⟹Too large 8 = B(D log G) ⟹Too Large public key, Slow encryption

A
,r

b

r + m

How can we
improve the
efficiency?

[Reg05] Regev, Oded. "On lattices, learning with errors, random linear codes, and cryptography." Journal of the ACM (JACM) 56.6 (2009): 34.

Lindner-Peikert Scheme [LP11]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./ s
b

=
A

+
e, A

n

m

[LP11] R. Lindner, and C. Peikert. "Better key sizes (and attacks) for LWE-based encryption." Cryptographers’ Track at the RSA Conference. Springer, Berlin, Heidelberg, 2011.

Lindner-Peikert Scheme [LP11]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./

¡ Ctxt = 5⃗6 ⋅ $ + +7, 5⃗6 ⋅ & + +8 + .
8 ⋅ 9 ∈ -.1×-.

s
b

=
A

+
e, A

n

m

A
,r

b
r +e7+ +e8

[LP11] R. Lindner, and C. Peikert. "Better key sizes (and attacks) for LWE-based encryption." Cryptographers’ Track at the RSA Conference. Springer, Berlin, Heidelberg, 2011.

m

Lindner-Peikert Scheme [LP11]

¡ pk = $, & = $ ⋅)⃗ + +⃗ ∈ -./×1×-./

¡ Ctxt = 5⃗6 ⋅ $ + +7, 5⃗6 ⋅ & + +8 + .
8 ⋅ 9 ∈ -.1×-.

s
b

=
A

+
e, A

n

m

• pk ≈ uniform by LWE assumption (Computational)
• Ctxt ≈ uniform by Leftover Hash Lemma LWE assumption (Computational)

⟹Smaller parameter 9!

A
,r

b
r +e7+ +e8

[LP11] R. Lindner, and C. Peikert. "Better key sizes (and attacks) for LWE-based encryption." Cryptographers’ Track at the RSA Conference. Springer, Berlin, Heidelberg, 2011.

m

Lindner-Peikert Scheme [LP11]

¡ By substituting Leftover Hash Lemma by the LWE assumption, Discrete Gaussian
Sampling is required in every encryption stage.

¡ How to deal with Discrete Gaussian Sampling?

1. High-bit precision / exact Sampling [GPV08, BLP+13] ⟹ rather slow performance

2. Inverse Sampling Method via look-up table [BCD+16]

⟹ much faster! But it still consumes a substantial portion of the encryption phase.

[GPV08] Gentry, Craig, Chris Peikert, and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions." Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM, 2008.
[BLP+13] Brakerski, Zvika, et al. "Classical hardness of learning with errors." Proceedings of the forty-fifth annual ACM symposium on Theory of computing. ACM, 2013.
[BCD+16] Bos, Joppe, et al. "Frodo: Take off the ring! practical, quantum-secure key exchange from LWE." Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016.

LWE + LWR based PKE Lizard

¡ Proposed by Banerjee-Peikert-Rosen in Eurocrypt’12 [BPR12]

¡ Instead of adding an error in LWE, just discard some least significant bits

⟹“derandomized” LWE

Learning with Rounding (LWR)

¡ Proposed by Banerjee-Peikert-Rosen in Eurocrypt’12 [BPR12]

¡ Instead of adding an error in LWE, just discard some least significant bits

⟹“derandomized” LWE

¡ The LWR problem is to distinguish " samples

()∈ $%&×$(

from " samples uniformly chosen in $%&×$(

Learning with Rounding (LWR)

s)* = ,- .
/

0* ,

n

0*

[BPR12] Banerjee, Abhishek, Chris Peikert, and Alon Rosen. "Pseudorandom functions and lattices." Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012.

¡ Researches on the hardness of LWR, which commonly aim to show LWE ≤ LWR

- [BPR12]: a super-polynomial modulus " ≥ $ ⋅ & ⋅ '((*) where & is an upper bound of
LWE errors

- [AKPW13]: a polynomial modulus and modulus-to-error ratio

- [BGM+16]: more general modulus, a bounded number of samples , = .(/01)

Hardness of LWR

[BPR12] Banerjee, Abhishek, Chris Peikert, and Alon Rosen. "Pseudorandom functions and lattices." Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012.
[AKPW13] Alwen, Joël, et al. "Learning with rounding, revisited." Advances in Cryptology–CRYPTO 2013. Springer, Berlin, Heidelberg, 2013. 57-74.
[BGM+16] Bogdanov, Andrej, et al. "On the hardness of learning with rounding over small modulus." Theory of Cryptography Conference. Springer, Berlin, Heidelberg, 2016.

¡ KeyGen: the same with other LWE-based PKEs

The Lizard PKE scheme

s
b

=
A

+
e, A

n

m

¡ KeyGen: the same with other LWE-based PKEs

¡ Encryption: Take a rounding instead of adding some errors

The Lizard PKE scheme

s
b

=
A

+
e, A

n

m

Ctxt =(!" #
$ % , !" #

$ % + #
' ⋅))

A b

rr

¡ KeyGen: the same with other LWE-based PKEs

¡ Encryption: Take a rounding instead of adding some errors

¡ Decryption: Compute and Output !
" ⋅ $! − $& ⋅ (⃗

The Lizard PKE scheme

s
b

=
A

+
e, A

n

m

Ctxt =()* "
+ , ,)* "

+ , + "
! ⋅ .)

A

r

b

r

¡ KeyGen: the same with other LWE-based PKEs

¡ Encryption: Take a rounding instead of adding some errors

¡ Decryption: Compute and Output !
" ⋅ $! − $& ⋅ (⃗

The Lizard PKE scheme

s
b

=
A

+
e, A

n

m

Ctxt =()* "
+ , ,)* "

+ , + "
! ⋅ .)

A b

Satisfy IND-CPA Security
under LWE and LWR

assumptions

r r

¡ In practice, the performance highly depends on the choice of secret distributions and parameters

¡ Our Choices for Efficiency:

- The secret key ! is chosen as a binary vector

- The ephemeral secret vector " is chosen as a sparse binary vector

⟹ Faster computation of ("⃗& ⋅ (, "⃗& ⋅ *)
- Moduli , and - are chosen to be power-of-two

⟹ Simpler rounding process done by just adding a constant and then right-shift (almost for free)

(e.g. , .
/ ⋅ 0 = .

/ ⋅ 0 + /
3.)

Parameter Choices

Caution! - How many LSBs can be discarded?

§ (Correctness) If we cut a large proportion , the correctness will not hold.

§ (Security) If we cut too small proportion , the security of a message will not hold.

⟹We choose a proper rounding modulus “p” to satisfy both security and correctness.

¡ Design Rationale; boost up the Encryption speed

- Encrypting w/o Discrete Gaussian Sampling

- Use sparse binary ephemeral secret "⃗.
¡ Feasible parameters

- “Slam dunk”; achieve all the negligible dec.fail.rate & conservative quantum security & better
efficiency

- Parameters were chosen by a core-SVP hardness methodology proposed in NewHope [ADPS16]
considering all best known attacks (dual attack, primal attack)

¡ Smaller Ciphertext size

- By discarding some LSBs, the ciphertext size is reduced with the factor #$% &
#$% '

Features of Lizard

[ADPS16] Alkim, Erdem, et al. "Post-quantum Key Exchange-A New Hope." USENIX Security Symposium. Vol. 2016. 2016.

Implementation

¡ Apply a variant of Fujisaki-Okamoto CCA conversion [HHK17]

(HHK conversion : IND-CPA PKE ⟹ IND-CCA KEM)

¡ IND-CCA PKE = IND-CCA KEM + One-Time Pad

⟹ CCALizard satisfies IND-CCA security under Quantum Random Oracle Model

CCALizard: IND-CCA variant of Lizard

[HHK17] Hofheinz, Dennis, Kathrin Hövelmanns, and Eike Kiltz. "A modular analysis of the Fujisaki-Okamoto transformation." Theory of Cryptography Conference. Springer, Cham, 2017.

Performance and Comparison of PKEs

Scheme Enc Dec Ctxt (bytes)

RSA-3072 116,894 8,776,864 75

NTRU EES743EP1 102,008 109,582 980

CCA-CHK+ ≈ 813,800 ≈ 785,200 804

CCALizard 32,272 47,125 955

[Table] Performance of our Enc/Dec procedures in cycles

Ø Our schemes were measured on an Intel Xeon E5- 2620 CPU running at 2.10GHz w/o Turbo Boost and Multithreading.
Ø CCA-CHK+ : [CHK+16], measured on Macbook pro Intel core i5 running at 2.60GHz
Ø RSA, NTRU schemes: measured on a PC with Intel quad-core i5-6600 running at 3.3 GHz processor, drawn from ECRYPT

Benchmarking of Crypto Systems.
Ø RSA does not achieve a quantum 128-bit security.
Ø CCA-CHK+ achieves only a quantum 58-bit security w.r.t. a core-SVP hardness methodology

• Encrypting a 256-bit plaintext with quantum 128-bit security

