# High-precision RNS-CKKS on small word-size architecture

Duhyeong Kim, Intel Labs FHE.org Meetup Jan 11<sup>th</sup>, 2024

### Overview

- Enable high-precision RNS-CKKS on fixed but smaller word-size architectures
  - Single scaling → Composite scaling
- Enable functionally correct CKKS composite scaling in two open-source libraries
  - OpenFHE: C++, enabled by Intel labs
  - Lattigo: Go, enabled by Seoul National University (SNU)
- Demonstrate with secure parameters the **equivalence** between single and composite scaling
  - 7-layer CNN Inference with longitudinal packing in OpenFHE-CKKS with composite scaling
  - 7-layer CNN Inference with multiplexed packing in Lattigo-CKKS with composite scaling
  - Logistic Regression Training in OpenFHE-CKKS with composite scaling

### Fully Homomorphic Encryption (FHE)

Any computation on encrypted data "without decryption process"



### CKKS: FHE for real-number arithmetic

How can we think of the "approximate" computation in CKKS?

- Imitation of "fixed-point" arithmetic in cleartext version
- Example: computation of  $1.584 \times 2.4835 \times 9.5937 \times 8.7264 \times 6.12743$  ( $\approx 2017.9897$ )



### CKKS: FHE for real-number arithmetic

How can we think of the "approximate" computation in CKKS?

- Imitation of "fixed-point" arithmetic in cleartext version
- Example: computation of  $1.584 \times 2.4835 \times 9.5937 \times 8.7264 \times 6.12743$  ( $\approx 2017.9897$ )



## Scaling Factor in CKKS

- Determine the "initial precision bits" under the decimal point
- CKKS Encoding/Encryption results in



- Larger  $\Delta$ , start with higher precision
- Smaller  $\Delta$ , start with lower precision

### Scaling Factor in CKKS

• Exponential growth of Scaling Factor

$$\succ (\Delta \cdot m) \cdot (\Delta \cdot m') = \Delta^2 \cdot mm'$$
  
$$\succ (\Delta^{2^k} \cdot m) \cdot (\Delta^{2^k} \cdot m') = \Delta^{2^{k+1}} \cdot mm'$$

• How to control the growth of scaling factor?

#### "rescale"

• Rescale(*ct*): *ct* mod  $\Delta^{\ell} \mapsto \left[\frac{ct}{\Delta}\right] \mod \Delta^{\ell-1}$  (from the context of "original" CKKS)  $\succ (\Delta \cdot m) \cdot (\Delta \cdot m') = \Delta^2 \cdot mm' \xrightarrow{\text{Rescale } (1/\Delta)} \Delta \cdot mm'$ 

• RNS-CKKS

> An efficient way to implement CKKS w/o big-number arithmetic

 $\succ$  Ctxt moduli  $Q_{\ell} = q_0 q_1 \cdots q_{\ell}$  for level  $\ell$  (instead of modulo  $\Delta^{\ell}$ )

 $\operatorname{RNS}_{Q_{\ell}}(x) \coloneqq (x \mod q_0, x \mod q_1, \dots, x \mod q_{\ell})$ 

• Rescale modulo  $Q_\ell$  in RNS?

> No efficient way to compute  $\mathbf{x} \mapsto \begin{bmatrix} \frac{1}{\Delta} \cdot \mathbf{x} \end{bmatrix}$ 

> Instead, we can efficiently compute  $\mathbf{x} \mapsto \left| \frac{1}{a_{\ell}} \cdot \mathbf{x} \right|$ 

$$\circ \left\lfloor \frac{1}{q_{\ell}} \cdot x \right\rfloor = q_{\ell}^{-1} \cdot (x - x \mod q_{\ell})$$

 $\circ\,$  Easy to obtain the RNS representation of  $x \mod q_\ell$ 

•  $\operatorname{RNS}_{Q_{\ell-1}}(x \mod q_{\ell}) = (x \mod q_{\ell}, x \mod q_{\ell}, \dots, x \mod q_{\ell})$ 

#### • Case 1: $\log \Delta < \text{word-size}$

 $\succ$  Set each prime  $q_{\ell}$  to be  $\log \Delta$  bits

Perform the "single scaling"

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{\mathbf{1}}{\boldsymbol{q}_{\ell}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-1}$$

- Set each product of  $q_\ell$ 's to be  $\log \Delta$  bits
- Perform the "composite scaling"

#### • Case 1: $\log \Delta < \text{word-size}$

 $\succ$  Set each prime  $q_{\ell}$  to be  $\log \Delta$  bits

Perform the "single scaling"

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{\mathbf{1}}{\boldsymbol{q}_{\ell}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-1}$$

- Set each product of  $q_\ell$ 's to be  $\log \Delta$  bits
- Perform the "composite scaling" (degree = 2)

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{\mathbf{1}}{\boldsymbol{q}_{\ell} \boldsymbol{q}_{\ell-1}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-2}$$

#### • Case 1: $\log \Delta < \text{word-size}$

 $\succ$  Set each prime  $q_{\ell}$  to be  $\log \Delta$  bits

Perform the "single scaling"

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{\mathbf{1}}{\boldsymbol{q}_{\ell}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-1}$$

- Set each product of  $q_\ell$ 's to be  $\log \Delta$  bits
- Perform the "composite scaling" (degree = 3)

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{1}{\boldsymbol{q}_{\ell} \boldsymbol{q}_{\ell-1} \boldsymbol{q}_{\ell-2}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-3}$$

#### • Case 1: $\log \Delta < \text{word-size}$

 $\succ$  Set each prime  $q_{\ell}$  to be  $\log \Delta$  bits

Perform the "single scaling"

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{\mathbf{1}}{\boldsymbol{q}_{\ell}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-1}$$

- Set each product of  $q_\ell$ 's to be  $\log \Delta$  bits
- Perform the "composite scaling" (degree = t)

$$\mathbf{x} \mod Q_{\ell} \mapsto \left[ \frac{1}{\boldsymbol{q}_{\ell} \cdots \boldsymbol{q}_{\ell-t+1}} \cdot \boldsymbol{x} \right] \mod Q_{\ell-t}$$

#### • Examples

(double-prime) (double-prime) (triple-prime)

### Precision Issue due to Rescale

- Original CKKS: NO precision issue
  - $\succ$  Scaling factor is **ALWAYS** preserved as  $\Delta$
- RNS-CKKS: **YES** precision issue
  - Scaling factor is **NOT** be preserved as  $\Delta$   $\circ$  Division by  $q_{\ell}$ 's, instead of  $\Delta$  $\circ \Delta^2/q_{\ell} \neq \Delta$
  - Critical Impact to Homomorphic Addition
     Enc( $\Delta \cdot m$ ) + Enc( $\Delta' \cdot m'$ ) = Enc( $\Delta \cdot (m + \Delta' / \Delta \cdot m')$ )  $\neq$  Enc( $\Delta \cdot (m + m')$ )
     The ratio  $\Delta' / \Delta$  (≠ 1) directly harms the precision

### Precision Issue due to Rescale

### • Solution 1: Choose the primes properly

 $\succ$  To keep the scaling factors (not equal but) very close to  $\Delta$ 

#### Single Scaling

 $\circ$  Requirement:  $q_\ell \simeq \Delta$  (proposed in original RNS-CKKS)

$$\circ \ \Delta^2/q_\ell \ \simeq \Delta$$

- Composite Scaling
  - Requirement:  $q_ℓ q_{ℓ-1} ≃ Δ$

$$\circ \Delta^2/q_\ell q_{\ell-1} \simeq \Delta$$

- Precision (Single Scaling v.s. Composite Scaling)
  - **NO Difference** in Mult + Relin + Rescale
  - **Closeness** of  $q_\ell$  (resp.  $q_\ell q_{\ell-1}$ ) and ∆ affects the **Add Precision**

### Precision Issue due to Rescale

#### Solution 2: Exact Scaling

- Differences v.s. Solution 1
  - $\circ$  Scaling factor  $\Delta_i$  for each level i
  - $\circ \Delta_i$ 's are **NOT** required to be **very close to**  $\Delta$
  - $\circ$  Adjust the ciphertext scaling factors to  $\Delta_i$  before Add and Mult
  - As a result, we "always" add two ciphertexts with "same" scaling factors
- > **Precision** (Single Scaling v.s. Composite Scaling)
  - O NO Difference in Mult + Relin + Rescale
  - NO Difference in Add
- > We implemented 32-bit RNS-CKKS in OpenFHE and Lattigo with **Solution 2** 
  - "FLEXIBLEAUTO" mode in OpenFHE
  - Bootstrapping enabled in both libraries

### Theoretical Analysis on Precision

Rescale
$$(ct)$$
:  $ct \mod Q_i \mapsto \left\lfloor \frac{1}{q_i} \cdot ct \right\rfloor \mod Q_{i-1}$  (single scaling)  
Rescale $^{(t)}(ct)$ :  $ct \mod Q_i \mapsto \left\lfloor \frac{1}{q_i q_{i-1} \cdots q_{i-t+1}} \cdot ct \right\rfloor \mod Q_{i-t}$  (composite scaling)

**Theorem.** Let  $B_{rs}$ ,  $B_{comp-rs}$  be the upper bounds of the error induced by  $\text{Rescale}(\cdot)$  and  $\text{Rescale}^{(t)}(\cdot)$ , respectively. Then, it holds that

$$B_{comp-rs} \leq \left(\frac{1}{q_i q_{i-1} \cdots q_{i-t+1}} + \frac{1}{q_i q_{i-1} \cdots q_{i-t+2}} + \cdots + \frac{1}{q_i} + 1\right) B_{rs} \approx \left(\frac{1}{q_i} + 1\right) B_{rs}$$
Hence, composite scaling results in less than  $\log\left(\frac{1}{q_i} + 1\right) \approx \frac{3.322}{q_i}$  bit **precision loss**, which is **negligible**, compared to single scaling

compared to single scaling.

# **Experimental Results**

### 7-layer CNN Inference (CIFAR-10)

- Implementation in OpenFHE with longitudinal packing
  - Unit tests with Same Precision

| Unit tests      | Precision bits<br>64-bit single scaling | Precision bits<br>32-bit composite scaling | ======== Parameters ====================================                                                                                                                                                  |
|-----------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fully connected | 39                                      | 39                                         | <ul> <li>Same for both cases</li> <li>Primes</li> <li>58-bit primes for 64-bit case</li> <li>(29, 29)-bit primes for 32-bit case</li> <li>&gt; Double-prime scaling</li> <li>&gt; 58 = 29 + 29</li> </ul> |
| ReLU            | 40                                      | 40                                         |                                                                                                                                                                                                           |
| Mean pool       | 41                                      | 41                                         |                                                                                                                                                                                                           |
| Convolution     | 39                                      | 39                                         |                                                                                                                                                                                                           |
| Bootstrapping   | 12                                      | 12                                         | Security                                                                                                                                                                                                  |
| Bootstrapping   | 12                                      | 12                                         | • Same for both cases                                                                                                                                                                                     |

- Implementation in Lattigo with multiplexed packing
  - > The end-to-end CNN Inference results match up to 5 digits after the decimal point
  - > 14 consecutive bootstrapping (2 per layer, before and after ReLU)

# **Experimental Results**

### **Logistic Regression Training**

- Reference code: <u>https://github.com/openfheorg/openfhe-logreg-training-examples</u>
- 1 bootstrapping per epoch





### Wrap-up

- **Result:** Enable high-precision RNS-CKKS on small word-size architectures without multi-precision arithmetic
  - Use of small word-size: GPU, FPGA, Embedded devices, etc.
  - Arbitrary precision for bootstrapping combined with Meta-BTS
- Limitation: Choice of scaling factor
  - Lower bound exists on each prime (NTT condition)
  - E.g.,  $\Delta = 2^{40} \rightarrow$  two 20-bit primes for double-prime scaling
    - How many 20-bit "NTT-friendly" primes exist for the dimension  $N = 2^{16}$ ?
  - Several small intervals that are not usable as scaling factor
- Implementation: Not public yet but planning for open-sourcing compositescaling variant of OpenFHE-CKKS



https://eprint.iacr.org/2023/1462