
High-precision RNS-CKKS
on small word-size architecture

Duhyeong Kim, Intel Labs

FHE.org Meetup

Jan 11th, 2024

• Enable high-precision RNS-CKKS on fixed but smaller word-size architectures
• Single scaling → Composite scaling

• Enable functionally correct CKKS composite scaling in two open-source libraries
• OpenFHE: C++, enabled by Intel labs

• Lattigo: Go, enabled by Seoul National University (SNU)

• Demonstrate with secure parameters the equivalence between single and
composite scaling
• 7-layer CNN Inference with longitudinal packing in OpenFHE-CKKS with composite scaling

• 7-layer CNN Inference with multiplexed packing in Lattigo-CKKS with composite scaling

• Logistic Regression Training in OpenFHE-CKKS with composite scaling

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

▪ Any computation on encrypted data “without decryption process”

𝒎

𝐄𝐧𝐜(𝒎)
𝐄𝐧𝐜 𝒇 𝒎

= ෨𝒇 𝑬𝒏𝒄 𝒎

𝒇(𝒎)
𝒇()

෨𝒇()

𝐄𝐧𝐜

Fully Homomorphic Encryption (FHE)

𝐃𝐞𝐜

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

• Imitation of “fixed-point” arithmetic in cleartext version

• Example: computation of 1.584 × 2.4835 × 9.5937 × 8.7264 × 6.12743 (≈ 2017.9897)

1.584

2.4835

9.5937

8.7264

6.12743

scale-up
(encode)

158400

248350

959370

872640

612743

⊗

encrypt

158403

248346

959371

872647

612738

⊗

39338751474

837192225089

612738

scale-down

393385

8371924

= 3.93385 × 105

= 83.71924 × 105

= 6.12738 × 105

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

• Imitation of “fixed-point” arithmetic in cleartext version

• Example: computation of 1.584 × 2.4835 × 9.5937 × 8.7264 × 6.12743 (≈ 2017.9897)

612738

393385

8371924

⊗ 3293389322759

scale-down

329338937

612738

⊗ 201798481579529 2017984819

scale-down

decrypt
2017984819

scale-down
(decode)

2017.984819

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Scaling Factor in CKKS

• Determine the “initial precision bits” under the decimal point

• CKKS Encoding/Encryption results in
𝑚 ↦ 𝚫 ⋅ 𝑚 + 𝑒

• Larger 𝚫, start with higher precision

• Smaller 𝚫, start with lower precision

scaling factor

encoding/encryption error
(size determined by FHE params)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Scaling Factor in CKKS

• Exponential growth of Scaling Factor
➢ 𝚫 ⋅ 𝑚 ⋅ 𝚫 ⋅ 𝑚′ = 𝚫𝟐 ⋅ 𝑚𝑚′

➢ 𝚫𝟐𝒌
⋅ 𝑚 ⋅ 𝚫𝟐𝒌

⋅ 𝑚′ = 𝚫𝟐𝒌+𝟏
⋅ 𝑚𝑚′

• How to control the growth of scaling factor?

“rescale”

• Rescale(𝑐𝑡): 𝑐𝑡 mod Δℓ ↦
𝑐𝑡

Δ
mod Δℓ−1

(from the context of “original” CKKS)

➢ 𝚫 ⋅ 𝑚 ⋅ 𝚫 ⋅ 𝑚′ = 𝚫𝟐 ⋅ 𝑚𝑚′ 𝚫 ⋅ 𝑚𝑚′
Rescale (1/Δ)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• RNS-CKKS
➢ An efficient way to implement CKKS w/o big-number arithmetic
➢ Ctxt moduli 𝑄ℓ = 𝑞0𝑞1 ⋯ 𝑞ℓ for level ℓ (instead of modulo Δℓ)

𝐑𝐍𝐒𝑸ℓ
𝒙 ≔ (𝒙 𝐦𝐨𝐝 𝒒𝟎, 𝒙 𝐦𝐨𝐝 𝒒𝟏, … , 𝒙 𝐦𝐨𝐝 𝒒ℓ)

• Rescale modulo 𝑄ℓ in RNS?

➢ No efficient way to compute 𝐱 ↦
𝟏

𝚫
⋅ 𝒙

➢ Instead, we can efficiently compute 𝐱 ↦
𝟏

𝒒ℓ
⋅ 𝒙

o
1

𝑞ℓ
⋅ 𝑥 = 𝑞ℓ

−1 ⋅ 𝑥 − 𝑥 mod 𝑞ℓ

o Easy to obtain the RNS representation of 𝑥 mod 𝑞ℓ

▪ RNS𝑄ℓ−1
𝑥 mod 𝑞ℓ = (𝑥 mod 𝑞ℓ, 𝑥 mod 𝑞ℓ, … , 𝑥 mod 𝑞ℓ)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: 𝐥𝐨𝐠 𝚫 < word-size
➢ Set each prime 𝑞ℓ to be log Δ bits
➢ Perform the “single scaling”

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ
⋅ 𝒙 mod 𝑄ℓ−1

• Case 2: 𝐥𝐨𝐠 𝚫 > word-size
• Set each product of 𝑞ℓ’s to be log Δ bits
• Perform the “composite scaling”

𝐱 mod 𝑄𝑖 ↦
𝟏

𝒒𝒊𝒒𝒊−𝟏
⋅ 𝒙 mod 𝑄𝑖−𝟐

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: 𝐥𝐨𝐠 𝚫 < word-size
➢ Set each prime 𝑞ℓ to be log Δ bits
➢ Perform the “single scaling”

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ
⋅ 𝒙 mod 𝑄ℓ−1

• Case 2: 𝐥𝐨𝐠 𝚫 > word-size
• Set each product of 𝑞ℓ’s to be log Δ bits
• Perform the “composite scaling” (degree = 2)

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ𝒒ℓ−1
⋅ 𝒙 mod 𝑄ℓ−2

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: 𝐥𝐨𝐠 𝚫 < word-size
➢ Set each prime 𝑞ℓ to be log Δ bits
➢ Perform the “single scaling”

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ
⋅ 𝒙 mod 𝑄ℓ−1

• Case 2: 𝐥𝐨𝐠 𝚫 > word-size
• Set each product of 𝑞ℓ’s to be log Δ bits
• Perform the “composite scaling” (degree = 3)

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ𝒒ℓ−1𝒒ℓ−2
⋅ 𝒙 mod 𝑄ℓ−3

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: 𝐥𝐨𝐠 𝚫 < word-size
➢ Set each prime 𝑞ℓ to be log Δ bits
➢ Perform the “single scaling”

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ
⋅ 𝒙 mod 𝑄ℓ−1

• Case 2: 𝐥𝐨𝐠 𝚫 > word-size
• Set each product of 𝑞ℓ’s to be log Δ bits
• Perform the “composite scaling” (degree = 𝑡)

𝐱 mod 𝑄ℓ ↦
𝟏

𝒒ℓ ⋯ 𝒒ℓ−𝑡+1
⋅ 𝒙 mod 𝑄ℓ−𝑡

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Examples

➢ log Δ = 𝟑𝟎, word-size = 𝟔𝟒: single scaling

➢ log Δ = 𝟑𝟎, word-size = 𝟑𝟐: single scaling

➢ log Δ = 𝟓𝟎, word-size = 𝟔𝟒: single scaling

➢ log Δ = 𝟓𝟎, word-size = 𝟑𝟐: composite scaling (double-prime)

➢ log Δ = 𝟕𝟎, word-size = 𝟔𝟒: composite scaling (double-prime)

➢ log Δ = 𝟕𝟎, word-size = 𝟑𝟐: composite scaling (triple-prime)

⋮ ⋮ ⋮

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

• Original CKKS:NO precision issue
➢ Scaling factor is ALWAYS preserved as 𝚫

• RNS-CKKS: YES precision issue

➢ Scaling factor is NOT be preserved as 𝚫
o Division by 𝑞ℓ’s, instead of Δ

o 𝚫𝟐/𝒒ℓ ≠ 𝚫

➢ Critical Impact to Homomorphic Addition
o Enc(Δ ⋅ 𝑚) + Enc(Δ′ ⋅ 𝑚′) = Enc(Δ ⋅ (𝑚 + 𝚫′/𝚫 ⋅ 𝑚′))

≠ Enc(Δ ⋅ (𝑚 + 𝑚′))

o The ratio 𝚫′/𝚫 (≠ 1) directly harms the precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

• Solution 1: Choose the primes properly
➢ To keep the scaling factors (not equal but) very close to 𝚫

➢ Single Scaling
o Requirement: 𝒒ℓ ≃ 𝚫 (proposed in original RNS-CKKS)

o 𝚫𝟐/𝒒ℓ ≃ 𝚫

➢ Composite Scaling
o Requirement: 𝒒ℓ𝒒ℓ−1 ≃ 𝚫

o 𝚫𝟐/𝒒ℓ𝒒ℓ−𝟏 ≃ 𝚫

➢ Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale

o Closeness of 𝑞ℓ (resp. 𝑞ℓ𝑞ℓ−1) and Δ affects the Add Precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

• Solution 2: Exact Scaling
➢ Differences v.s. Solution 1

o Scaling factor 𝚫𝒊 for each level 𝒊

o 𝚫𝒊’s are NOT required to be very close to 𝚫

o Adjust the ciphertext scaling factors to 𝚫𝒊 before Add and Mult

o As a result, we “always” add two ciphertexts with “same” scaling factors

➢ Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale

o NO Difference in Add

➢ We implemented 32-bit RNS-CKKS in OpenFHE and Lattigo with Solution 2

➢ “FLEXIBLEAUTO” mode in OpenFHE

➢Bootstrapping enabled in both libraries

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Theoretical Analysis on Precision

Rescale 𝑐𝑡 : 𝑐𝑡 mod 𝑄𝑖 ↦
1

𝑞𝑖
⋅ 𝑐𝑡 mod 𝑄𝑖−1 (single scaling)

Rescale(𝑡) 𝑐𝑡 : 𝑐𝑡 mod 𝑄𝑖 ↦
1

𝑞𝑖𝑞𝑖−1⋯𝑞𝑖−𝑡+1
⋅ 𝑐𝑡 mod 𝑄𝑖−𝑡 (composite scaling)

Theorem. Let 𝐵𝑟𝑠, 𝐵𝑐𝑜𝑚𝑝−𝑟𝑠 be the upper bounds of the error induced by Rescale(⋅) and Rescale(𝑡)(⋅),

respectively. Then, it holds that

𝐵𝑐𝑜𝑚𝑝−𝑟𝑠 ≤
1

𝑞𝑖𝑞𝑖−1 ⋯ 𝑞𝑖−𝑡+1
+

1

𝑞𝑖𝑞𝑖−1 ⋯ 𝑞𝑖−𝑡+2
+ ⋯ +

1

𝑞𝑖
+ 1 𝐵𝑟𝑠 ≈

1

𝑞𝑖
+ 1 𝐵𝑟𝑠

Hence, composite scaling results in less than log
1

𝑞𝑖
+ 1 ≈

3.322

𝑞𝑖
bit precision loss, which is negligible,

compared to single scaling.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

7-layer CNN Inference (CIFAR-10)
• Implementation in OpenFHE with longitudinal packing

➢ Unit tests with Same Precision

• Implementation in Lattigo with multiplexed packing
➢ The end-to-end CNN Inference results match up to 5 digits after the decimal point
➢ 14 consecutive bootstrapping (2 per layer, before and after ReLU)

Experimental Results

19

Unit tests
Precision bits

64-bit single scaling
Precision bits

32-bit composite scaling

Fully connected 39 39

ReLU 40 40

Mean pool 41 41

Convolution 39 39

Bootstrapping 12 12

========== Parameters ==========
Ring dimension : 65536
Scaling factor : 258

• Same for both cases

Primes
• 58-bit primes for 64-bit case
• (29, 29)-bit primes for 32-bit case

➢ Double-prime scaling
➢ 58 = 29 + 29

Security
• Same for both cases

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Experimental Results
Logistic Regression Training

• Reference code: https://github.com/openfheorg/openfhe-logreg-training-examples
• 1 bootstrapping per epoch

========== Parameters ==========
Ring dimension : 32768
Scaling factor : 258

• Same for both cases

Primes
• 58-bit primes for 64-bit case
• (29, 29)-bit primes for 32-bit case

➢ Double-prime scaling
➢ 58 = 29 + 29

Security
• Same for both cases

Bootstrapping
• Same for both cases

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://github.com/openfheorg/openfhe-logreg-training-examples

Wrap-up

• Result: Enable high-precision RNS-CKKS on small word-size architectures
without multi-precision arithmetic
• Use of small word-size: GPU, FPGA, Embedded devices, etc.
• Arbitrary precision for bootstrapping combined with Meta-BTS

• Limitation: Choice of scaling factor
• Lower bound exists on each prime (NTT condition)
• E.g., Δ = 240 → two 20-bit primes for double-prime scaling

• How many 20-bit “NTT-friendly” primes exist for the dimension 𝑁 = 216?
• Several small intervals that are not usable as scaling factor

• Implementation: Not public yet but planning for open-sourcing composite-
scaling variant of OpenFHE-CKKS

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://eprint.iacr.org/2023/1462

https://eprint.iacr.org/2023/1462

	Slide 1: High-precision RNS-CKKS on small word-size architecture
	Slide 3: Overview
	Slide 4: Fully Homomorphic Encryption (FHE)
	Slide 5: CKKS: FHE for real-number arithmetic
	Slide 6: CKKS: FHE for real-number arithmetic
	Slide 7: Scaling Factor in CKKS
	Slide 8: Scaling Factor in CKKS
	Slide 9: Rescale in RNS-CKKS
	Slide 10: Rescale in RNS-CKKS
	Slide 11: Rescale in RNS-CKKS
	Slide 12: Rescale in RNS-CKKS
	Slide 13: Rescale in RNS-CKKS
	Slide 14: Rescale in RNS-CKKS
	Slide 15: Precision Issue due to Rescale
	Slide 16: Precision Issue due to Rescale
	Slide 17: Precision Issue due to Rescale
	Slide 18: Theoretical Analysis on Precision
	Slide 19: Experimental Results
	Slide 20: Experimental Results
	Slide 21: Wrap-up
	Slide 22

