High-precision RNS-CKKS

on small word-size architecture

Duhyeong Kim, Intel Labs
FHE.org Meetup
Jan 11t 2024

Overview

* Enable high-precision RNS-CKKS on fixed but smaller word-size architectures
* Single scaling — Composite scaling

* Enable functionally correct CKKS composite scaling in two open-source libraries
 OpenFHE: C++, enabled by Intel labs
 Lattigo: Go, enabled by Seoul National University (SNU)

 Demonstrate with secure parameters the equivalence between single and
composite scaling
» 7-layer CNN Inference with longitudinal packing in OpenFHE-CKKS with composite scaling
» 7-layer CNN Inference with multiplexed packing in Lattigo-CKKS with composite scaling
* Logistic Regression Training in OpenFHE-CKKS with composite scaling

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Fully Homomorphic Encryption (FHE)

" Any computation on encrypted data “without decryption process”

fO)

m E——) f(m)
Enc() ‘ > Dec()
> Ef‘c(f (m))
Enc(m) 70 — F(Enc(m))

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

* Imitation of “fixed-point” arithmetic in cleartext version

* Example: computation of 1.584 X 2.4835 X 9.5937 x 8.7264 X 6.12743 (= 2017.9897)

1.584 158400 158403
:}2%*39338751474 393385
2.4835 248350 248346

scale-up
(encode) encrypt

9.5937 s 95937() sy 959371
>g>+ 837192225089

scale-down
)

8371924

8.7264 872640 872647

6.12743 612743 612738 > 612738

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?
* Imitation of “fixed-point” arithmetic in cleartext version

* Example: computation of 1.584 X 2.4835 X 9.5937 x 8.7264 X 6.12743 (= 2017.9897)

393385

scale-down
>X)-> 3293389322759 =) 3720338937

scale-down decrypt
8371924 >X>+ 201798481579529 === 2017984819 === 2017984819
scale-down

(decode)
612738 » 612738 2017.984819

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Scaling Factor in CKKS

* Determine the “initial precision bits” under the decimal point

* CKKS Encoding/Encryption results in
m—A-m+e

T “

scaling factor

encoding/encryption error
(size determined by FHE params)

e Larger A, start with higher precision
* Smaller A, start with lower precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Scaling Factor in CKKS

* Exponential growth of Scaling Factor
> (A-m)-(A-m') =A% -mm’
> (Azk -m) : (Azk -m’) = A2

* How to control the growth of scaling factor?

“rescale”

ct —
* Rescale(ct): ct mod Af lxl mod A?~1 (from the context of “original” CKKS)

> (A . m) . (A . m/) —|AZ . mm’ Rescale(l/A): A-mm'

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

* RNS-CKKS

» An efficient way to implement CKKS w/o big-number arithmetic
> Ctxt moduli Q; = goq4 *** g, for level £ (instead of modulo A?)

RNS,,(x) := (x mod qo, x mod q4, ..., x mod q,)

* Rescale modulo Q, in RNS?
» No efficient way to compute x — E : x}

.. 1
» Instead, we can efficiently compute x — LI— - X
'

o lqix] =q,;'- (x —xmod qp)
4
o Easy to obtain the RNS representation of x mod g,
= RNSy,_,(x mod q,) = (x mod g, x mod gy, ..., x mod q;)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

* Case 1: log A < word-size
» Set each prime g, to be log A bits
» Perform the “single scaling”

1
xmod Q, ~ LI— - x‘ mod Q,_1
¢

* Case 2: log A > word-size
* Set each product of g,’s to be log A bits
* Perform the “composite scaling”

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

* Case 1: log A < word-size
» Set each prime g, to be log A bits
» Perform the “single scaling”

1
xmod Q, ~ LI— - x‘ mod Q,_1
¢

* Case 2: log A > word-size
* Set each product of g,’s to be log A bits
* Perform the “composite scaling” (degree = 2)

xmod Q, ~ {
¢ q:9¢-1

- x‘ mod Q,_,

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

* Case 1: log A < word-size
» Set each prime g, to be log A bits
» Perform the “single scaling”

1
xmod Q, ~ LI— - x‘ mod Q,_1
¢

* Case 2: log A > word-size
* Set each product of g,’s to be log A bits
e Perform the “composite scaling” (degree = 3)

xmod Q, - {
¢ Q:94o-19¢0-2

- x} mod Q,_-

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

* Case 1: log A < word-size
» Set each prime g, to be log A bits
» Perform the “single scaling”

1
xmod Q, ~ LI— - x‘ mod Q,_1
¢

* Case 2: log A > word-size
* Set each product of g,’s to be log A bits
e Perform the “composite scaling” (degree = t)

1

qe " qo—t+1

xmod Q, ~ { - x} mod Q,_;

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

 Examples
» log A = 30, word-size = 64: single scaling
» log A = 30, word-size = 32: single scaling
» log A = 50, word-size = 64: single scaling
» log A = 50, word-size = 32: composite scaling (double-prime)
» log A = 70, word-size = 64: composite scaling (double-prime)
» log A = 70, word-size = 32: composite scaling (triple-prime)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

* Original CKKS: NO precision issue
» Scaling factor is ALWAYS preserved as A

* RNS-CKKS: YES precision issue

» Scaling factor is NOT be preserved as A
o Division by g,’s, instead of A
oA%*/q, + A
» Critical Impact to Homomorphic Addition
o Enc(A-m) + Enc(A"-m') =Enc(A-(m+ A" /A-m"))
Enc(A- (m +m"))
o The ratio A’ /A (# 1) directly harms the precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

* Solution 1: Choose the primes properly
» To keep the scaling factors (not equal but) very close to A
» Single Scaling
o Requirement: q, =~ A (proposed in original RNS-CKKS)
o A%/q, = A
» Composite Scaling
o Requirement: q,q,_1 = A
o A%/q,q,-1 = A
» Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale
o Closeness of g, (resp. gpqy—1) and A affects the Add Precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

 Solution 2: Exact Scaling

» Differences v.s. Solution 1
o Scaling factor A; for each level i
o A;’s are NOT required to be very close to A
o Adjust the ciphertext scaling factors to A; before Add and Mult
o As aresult, we “always” add two ciphertexts with “same” scaling factors

» Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale
o NO Difference in Add

» We implemented 32-bit RNS-CKKS in OpenFHE and Lattigo with Solution 2
» “FLEXIBLEAUTO” mode in OpenFHE
» Bootstrapping enabled in both libraries

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Theoretical Analysis on Precision

Rescale(ct): ct mod Q; ~ i : ct} mod Q;_, (single scaling)

[qi

Rescale®(ct): ct mod Q; ~ !

- ct} mod Q;_; (composite scaling)
[4idi-1"""qi-t+1

Theorem. Let B,.s, B.omp—rs be the upper bounds of the error induced by Rescale(-) and Rescale® (),
respectively. Then, it holds that

1 1 1 1
B < + +:+—+1)Bs=|—+1|B
rompTe (CIiCIi—1 i-t+1 idi-17" Gi-e+2 qi) ” (qi) "

3.322

Hence, composite scaling results in less than log (qi +1) ~ bit precision loss, which is negligible,

di

compared to single scaling.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Experimental Results
7-layer CNN Inference (CIFAR-10)

* Implementation in OpenFHE with longitudinal packing

Precision bits
32-bit composite scaling

> Unit tests with Same Precision

Precision bits
64-bit single scaling

Fully connected 39
RelU 40
Mean pool 41
Convolution 39
Bootstrapping 12

* Implementation in Lattigo with multiplexed packing

39
40
41
39
12

========== Parameters ==========
Ring dimension : 65536
Scaling factor : 258
* Same for both cases
Primes
* 58-bit primes for 64-bit case
* (29, 29)-bit primes for 32-bit case

» Double-prime scaling
» 58=29+29

Security
 Same for both cases

» The end-to-end CNN Inference results match up to 5 digits after the decimal point

» 14 consecutive bootstrapping (2 per layer, before and after ReLU)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

19

Experimental Results

Logistic Regression Training

* Reference code: https://github.com/openfheorg/openfhe-logreg-training-examples
* 1 bootstrapping per epoch

Train Losses

Train Losses vs. Epoches Taken

- - ========== Parameters ==========
single scale 64-bit . . .
composite scale 32-bit Ring dimension : 32768
0.65 1 cleartext Scaling factor : 28
* Same for both cases
0.60 - .
Primes
* 58-bit primes for 64-bit case
0.55 * (29, 29)-bit primes for 32-bit case
> Double-prime scaling
> 58=29+29
0.50 - .
Security
* Same for both cases
0.45 -
Bootstrapping
0.40 - * Same for both cases

25

T T T T T
50 75 100 125 150 175 200
Epoches
Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://github.com/openfheorg/openfhe-logreg-training-examples

Wrap-up

* Result: Enable high-precision RNS-CKKS on small word-size architectures
without multi-precision arithmetic

e Use of small word-size: GPU, FPGA, Embedded devices, etc.
* Arbitrary precision for bootstrapping combined with Meta-BTS

 Limitation: Choice of scaling factor
* Lower bound exists on each prime (NTT condition)
* E.g., A = 2*9 - two 20-bit primes for double-prime scaling
« How many 20-bit “NTT-friendly” primes exist for the dimension N = 216?
* Several small intervals that are not usable as scaling factor

* Implementation: Not public yet but planning for open-sourcing composite-
scaling variant of OpenFHE-CKKS

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://eprint.iacr.org/2023/1462

https://eprint.iacr.org/2023/1462

	Slide 1: High-precision RNS-CKKS on small word-size architecture
	Slide 3: Overview
	Slide 4: Fully Homomorphic Encryption (FHE)
	Slide 5: CKKS: FHE for real-number arithmetic
	Slide 6: CKKS: FHE for real-number arithmetic
	Slide 7: Scaling Factor in CKKS
	Slide 8: Scaling Factor in CKKS
	Slide 9: Rescale in RNS-CKKS
	Slide 10: Rescale in RNS-CKKS
	Slide 11: Rescale in RNS-CKKS
	Slide 12: Rescale in RNS-CKKS
	Slide 13: Rescale in RNS-CKKS
	Slide 14: Rescale in RNS-CKKS
	Slide 15: Precision Issue due to Rescale
	Slide 16: Precision Issue due to Rescale
	Slide 17: Precision Issue due to Rescale
	Slide 18: Theoretical Analysis on Precision
	Slide 19: Experimental Results
	Slide 20: Experimental Results
	Slide 21: Wrap-up
	Slide 22

