Efficient Homomorphic Comparison Methods with Optimal Complexity

ASIACRYPT 2020
Jung Hee Cheon, Dongwoo Kim and Duhyeong Kim
Seoul National University

This Work

- Complexity-Optimal Homomorphic Comparison Method for word-wise HEs
$>$ Follow-up Study of [CKK+19] (Asiacrypt'19)
\checkmark Quasi-optimal solution for homomorphic comparison
\checkmark Impractical to use (e.g., over 47 minutes for 20-bit integer comparison)
$>$ (Optimality) Requires "asymptotically minimal" homomorphic multiplications
> (Practicality) Comparable to "bit-wise" homomorphic comparison in amortized time
> (Mathematical Perspective) A new framework "composite polynomial approximation" for sign function

Backgrounds

Homomorphic Encryption

- Homomorphic Encryption (HE)
> Allows any computation on encrypted data "without decryption process"

Homomorphic Encryption

- Ex) Privacy-preserving Machine Learning

Homomorphic Encryption

- Ex) Privacy-preserving Machine Learning

Homomorphic Encryption

Q) What are the limitations of applying HE to real-world applications?

Ans) Computational Inefficiency due to restricted basic homomorphic operations

In this talk, we focus on making up for the weakness of word-wise approach!

Polynomial Approximation

- Imagine that we only have two tools: Addition and Multiplication
- Then, how we can we evaluate "non-polynomial" functions including comparison?
\Rightarrow Approximately compute via polynomial approximation!
- Various general Poly. Approx. methods in numerical analysis
$>$ Taylor (local), Least square approximation (L2-norm), minimax (L ∞-norm), Chebyshev, etc.
- Due to these well-studied Poly. Approx. methods, one may think we've already done (?)
$>$ Theoretically, we may say...yes
$>$ But in efficiency and practicality, hmm...long way to go!

Polynomial Approximation

- Limitations of general polynomial approximation methods
$>$ Aim to find the relation between degree and error bound
$>$ They output "minimal-degree" polynomial within a certain error bound under some error measure
$>$ BUT, the number of multiplications (complexity) is also an very important factor, more critical in HE
"Can we find a new polynomial approximation method (for the sign function) with minimal complexity rather than degree?"

High-level Idea

High-level Idea [cKK+19, this work]

- To approximate a non-polynomial function with some "structured" polynomials
$>$ An "unstructured" poly G requires at least $\Theta(\sqrt{\operatorname{deg} G})$ multiplications [PS73]
- For $|x|$, to obtain α-bit precision output via minimax poly. Approx. over $[-1,1], \Theta\left(2^{\alpha / 2}\right)$ multiplications are required
$>$ For $\boldsymbol{F}=\boldsymbol{f} \circ \boldsymbol{f} \circ \cdots \circ \boldsymbol{f}$ for a const-degree f, then it requires only $\Theta(\log \operatorname{deg} F)$ multiplications
$>$ If $\operatorname{deg} F=o\left(2^{\operatorname{deg} G}\right)$, then F evaluation requires (asymptotically) less complexity than G evaluation.

[^0]
High-level Idea [ckk+19, this work]

The previous work $[\mathbf{C K K}+\mathbf{1 9]}$ finds such structured polynomials from the literature of numerical analysis

In this work, we aim to construct a new framework for composite polynomial approximation, rather than exploiting existing algorithms

Go Into Detail

Previous Work [CKK+19]

- Main Idea

$>$ Composite Polynomial \Leftrightarrow "Iterative Algorithm"
Express the comparison function as a rational function:

Goldschmidt's iterative algorithm for "division"
[Gol64]

$$
\operatorname{Comp}(a, b)=\left\{\begin{array}{ll}
1 & \text { if } a>b \\
\frac{1}{2} & \text { if } a=b \\
0 & \text { if } a<b
\end{array}\right\}=\lim _{d \rightarrow \infty} \frac{a^{2^{d}}}{a^{a^{d}+b^{2}}}
$$

$>$ More specifically, $\frac{a^{2 d}}{a^{2^{d}+b^{2}}}$ is evaluated by iterative computations of $a \leftarrow \frac{a^{2}}{a^{2}+b^{2}}$ and $b \leftarrow \frac{b^{2}}{a^{2}+b^{2}}$

Our Work

- Key Observation
$>$ The previous approach can be interpreted as the following two steps

1. Normalize inputs $a \leftarrow \frac{a}{a+b}$ and $b \leftarrow \frac{b}{a+b}$ so that $a+b=1$
2. Iteratively compute a rational function $a \leftarrow f_{0}(a)=\frac{a^{2}}{a^{2}+b^{2}}=\frac{a^{2}}{a^{2}+(1-a)^{2}}$

Re-interpret: $f_{0}^{(d)}=f_{0} \circ f_{0} \circ f_{0} \circ \cdots \circ f_{0}$ gets close to $\chi_{\left(\frac{1}{2}, \infty\right)}(x)=\frac{\operatorname{sgn}(2 x-1)+1}{2}$ over [0,1] as $d \leftarrow \infty$

Our Work

- The graph represents $f_{0}^{(d)}$ for $d=1,2,3$

Our Work

- Key Observation

$>$ The basic function f does NOT need to be the rational function $f_{0}(x)=\frac{x^{2}}{x^{2}+(1-x)^{2}}$ which contains expensive division operation
$>$ Instead, symmetry w.r.t. (1/2,1/2), convexity, and some other things may be enough
"What are the core properties of f which makes $f^{(d)}$ get close to the sign function?"

$$
\begin{gathered}
\text { "Equivalence": } \chi_{\left(\frac{1}{2}, \infty\right)}=\operatorname{sgn}=\operatorname{comp} \\
\operatorname{comp}(a, b)=\frac{\operatorname{sgn}(a-b)+1}{2}
\end{gathered}
$$

Our Work

- Core properties of \boldsymbol{f} :

$$
\begin{aligned}
& \text { 1. } f(-x)=-f(x) \\
& \text { 2. } f(1)=1 \\
& \text { 3. } f^{\prime}(x)=c\left(1-x^{2}\right)^{n} \text { for some } c>0
\end{aligned}
$$

(Origin Symmetry)
(Convergence to ± 1)
(Faster Convergence; Optional)

- Such f is "uniquely" determined for each n :

$$
f_{n}(x)=\sum_{i=0}^{n} \frac{1}{4^{i}} \cdot\binom{2 i}{i} \cdot x\left(1-x^{2}\right)^{i}
$$

- $f_{1}(x)=-\frac{1}{2} x^{3}+\frac{3}{2} x$
- $f_{2}(x)=\frac{3}{8} x^{5}-\frac{10}{8} x^{3}+\frac{15}{8} x$

Our Work

- Graphs of $f_{n}^{(d)}$ for various n and d

(a) f_{n} for $n=1,2,3$

(b) $f_{1}^{(d)}$ for $d=2,4,6$

Our Work

Theorem 1. If the number of compositions $d \geq \frac{1}{\log f_{n}^{\prime}(0)} \cdot \log \left(\frac{1}{\epsilon}\right)+\frac{1}{\log (n+1)} \cdot \log \alpha+O(1)$, then it holds that $\left\|f_{n}^{(d)}(x)-\operatorname{sgn}(x)\right\| \leq 2^{-\alpha}$ for $x \in[-1,-\epsilon] \cup[\epsilon, 1]$.

Our Work

Theorem 1. If the number of compositions $d \geq \frac{1}{\log f_{n}^{\prime}(0)} \cdot \log \left(\frac{1}{\epsilon}\right)+\frac{1}{\log (n+1)} \cdot \log \alpha+O(1)$ then it holds that $\left\|f_{n}^{(d)}(x)-\operatorname{sgn}(x)\right\| \leq 2^{-\alpha}$ for $x \in[-1,-\epsilon\rceil \cup[\epsilon, 1]$.

$$
\begin{aligned}
& \text { <The goal of the composition> } \\
& \text { To put }[\boldsymbol{\epsilon}, \mathbf{1}] \text { into }\left[\mathbf{1}-\mathbf{2}^{-\alpha}, \mathbf{1}\right] \\
& \text { (and }[-\mathbf{1},-\boldsymbol{\epsilon}] \text { into }\left[-\mathbf{1},-\mathbf{1}+\mathbf{2}^{-\alpha}\right] \text {) }
\end{aligned}
$$

Our Work

Theorem 1. If the number of compositions $d \geq \frac{1}{\log f_{n}^{\prime}(0)} \cdot \log \left(\frac{1}{\epsilon}\right)+\frac{1}{\log (n+1)} \cdot \log \alpha+O$ (1),
then it holds that $\left\|f_{n}^{(d)}(x)-\operatorname{sgn}(x)\right\| \leq 2^{-\alpha}$ for $x \in[-1,-\epsilon] \cup[\epsilon, 1]$.

- Core Property 2 and 3 of f_{n}

$$
\text { Put }[\epsilon, 1] \text { into }
$$

\Rightarrow Adequate for the second goal $[1-c, 1] \Rightarrow\left[1-2^{-\alpha}, 1\right]$
$>$ But, NOT necessary for the first goal $[\epsilon, 1] \Rightarrow[1-c, 1]$

Our Work

- g Acceleration method
$>$ Find g_{n} optimal to the first goal, and then replace $f_{n}^{(d)}$ by $f_{n}^{\left(d_{2}\right)} \circ g_{n}^{\left(d_{1}\right)}(x) \approx \operatorname{sgn}(x)$ over $[-1,1]$
$>$ Replace core property 2 and 3 by a new core property 4 for g_{n}
$>g_{n}$ is much steeper than f_{n} at zero $\left(g_{n}^{\prime}(0) \approx f_{n}^{\prime}(0)^{2}\right)$ but not flat at ± 1

Our Work

- g Acceleration method

Results

- (Theoretic) New homomorphic comparison algorithms with optimal asymptotic complexity

Parameters	Minimax Approx.	$[$ CK +19] Method	Our Methods
$\log (1 / \epsilon)=\Theta(1)$	$\Theta(\sqrt{\alpha})$	$\Theta\left(\log ^{2} \alpha\right)$	$\Theta(\log \boldsymbol{\alpha})$
$\log (1 / \epsilon)=\Theta(\alpha)$	$\Theta\left(\sqrt{\alpha} \cdot 2^{\alpha / 2}\right)$	$\Theta(\alpha \cdot \log \alpha)$	$\boldsymbol{\Theta}(\boldsymbol{\alpha})$
$\log (1 / \epsilon)=\Theta\left(2^{\alpha}\right)$	$\Theta\left(\sqrt{\alpha} \cdot 2^{2^{\alpha-1}}\right)$	$\Theta\left(\alpha \cdot 2^{\alpha}\right)$	$\boldsymbol{\Theta}\left(2^{\alpha}\right)$

Results

- (Practical) Much faster than the previous [CKK+19] method in practice
- 30 times faster for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

Precision bits	[CK +19] method	Our method 1	Our method 2
8	238 s (3.63 ms)*	59 s (0.90 ms)	31 s (0.47 ms)
12	$572 \mathrm{~s}(8.73 \mathrm{~ms})^{*}$	$93 \mathrm{~s}(1.42 \mathrm{~ms})$	$47 \mathrm{~s}(0.72 \mathrm{~ms})$
16	$1429 \mathrm{~s}(21.8 \mathrm{~ms})^{*}$	$151 \mathrm{~s}(2.30 \mathrm{~ms})^{*}$	80 s (1.22 ms)
20	2790 s (42.6 ms)*	285 s (4.35 ms)*	$94 \mathrm{~s}(1.43 \mathrm{~ms})^{*}$

\# Implementation based on HEaaN with $N=2^{17}$ and $h=256$
\# An asterisk(*) means that the HEaaN parameter does not achieve 128-bit security due to large $\log Q \geq 1700$

Results

- (Practical) Much faster than the previous [CKK+19] method in practice
- 30 times faster for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

Precision bits	[CK +19] method	Our method 1	Our method 2
8	238 s (3.63 ms)*	$59 \mathrm{~s}(0.90 \mathrm{~ms})$	31 s (0.47 ms)
12	$572 \mathrm{~s}(8.73 \mathrm{~ms})^{*}$	$93 \mathrm{~s}(1.42 \mathrm{~ms})$	47 s (0.72 ms)
16	1429 s (21.8 ms)*	$151 \mathrm{~s}(2.30 \mathrm{~ms}$)*	80 s (1.22 ms)
20	2790 s (42.6 ms)*	285 s (4.35 ms)*	$94 \mathrm{~s} \mathrm{(1.43} \mathrm{ms)*}$

Further Works \& Open Questions

- Follow-up study of this work
$>$ What is the "best choice" of \boldsymbol{n} ?
\checkmark In terms of computational complexity, $n=4$ is the best
\checkmark Then how about in terms of the various HE cost models? (Can we classify the HE cost models?)
$>$ Proofs for heuristic properties of g acceleration methods
- In general,
> Can we design new homomorphic comparison algorithms from outside of polynomial evaluation framework?
$>$ Can we construct a new HE scheme which supports add, mult and comparison as basic operations?

[^0]: [CKK+19] J.H. Cheon, D. Kim, D. Kim et al. "Numerical Methods for Comparison on Homomorphically Encrypted Numbers." ASIACRYPT 2019
 [PS73] Paterson, Michael S., and Larry J. Stockmeyer. "On the number of nonscalar multiplications necessary to evaluate polynomials." SIAM Journal on Computing 2.1 (1973): 60-66.

