

Efficient Homomorphic Comparison Methods with Optimal Complexity

ASIACRYPT 2020

Jung Hee Cheon, Dongwoo Kim and Duhyeong Kim

Seoul National University

This Work

- Complexity-Optimal Homomorphic Comparison Method for word-wise HEs
 - Follow-up Study of [CKK+19] (Asiacrypt'19)
 - ✓ **Quasi-optimal** solution for homomorphic comparison
 - ✓ Impractical to use (e.g., over 47 minutes for 20-bit integer comparison)
 - > (Optimality) Requires "asymptotically minimal" homomorphic multiplications
 - > (Practicality) Comparable to "bit-wise" homomorphic comparison in amortized time
 - > (Mathematical Perspective) A new framework "composite polynomial approximation" for sign function

[CKK+19] J.H. Cheon, D. Kim, D. Kim et al. "Numerical Methods for Comparison on Homomorphically Encrypted Numbers." ASIACRYPT 2019

Backgrounds

Homomorphic Encryption (HE)

> Allows any computation on encrypted data "without decryption process"

Ex) Privacy-preserving Machine Learning

Ex) Privacy-preserving Machine Learning

Q) What are the limitations of applying HE to real-world applications?

Ans) Computational Inefficiency due to restricted basic homomorphic operations

In this talk, we focus on making up for the weakness of word-wise approach!

Polynomial Approximation

- Imagine that we only have two tools: Addition and Multiplication
- Then, how we can we evaluate "non-polynomial" functions including comparison?

 \Rightarrow Approximately compute via **polynomial approximation!**

- Various general Poly. Approx. methods in numerical analysis
 - > Taylor (local), Least square approximation (L2-norm), minimax (L ∞ -norm), Chebyshev, etc.
- Due to these well-studied Poly. Approx. methods, one may think we've already done (?)
 - > Theoretically, we may say...yes
 - > But in efficiency and practicality, hmm...long way to go!

Polynomial Approximation

• Limitations of general polynomial approximation methods

> Aim to find the relation between **degree** and **error bound**

> They output "minimal-degree" polynomial within a certain error bound under some error measure

> BUT, the number of multiplications (**complexity**) is also an very important factor, more critical in HE

"Can we find a new polynomial approximation method (for the sign function) with minimal complexity rather than degree?"

High-level Idea

High-level Idea [CKK+19, this work]

- To approximate a non-polynomial function with some "structured" polynomials
 - > An "unstructured" poly G requires at least $\Theta(\sqrt{\deg G})$ multiplications [PS73]
 - For |x|, to obtain α -bit precision output via minimax poly. Approx. over [-1,1], $\Theta(2^{\alpha/2})$ multiplications are required

> For $\mathbf{F} = \mathbf{f} \circ \mathbf{f} \circ \cdots \circ \mathbf{f}$ for a const-degree f, then it requires only $\Theta(\log \deg F)$ multiplications

> If deg $F = o(2^{\deg G})$, then F evaluation requires (asymptotically) less complexity than G evaluation.

[CKK+19] J.H. Cheon, D. Kim, D. Kim et al. "Numerical Methods for Comparison on Homomorphically Encrypted Numbers." ASIACRYPT 2019

[PS73] Paterson, Michael S., and Larry J. Stockmeyer. "On the number of nonscalar multiplications necessary to evaluate polynomials." *SIAM Journal on Computing* 2.1 (1973): 60-66.

High-level Idea [CKK+19, this work]

The previous work **[CKK+19] finds** such structured polynomials **from the literature of numerical analysis**

In this work, we aim to construct a new framework for composite polynomial approximation,

rather than exploiting existing algorithms

Go Into Detail

Previous Work [CKK+19]

Main Idea

➤ Composite Polynomial ⇔ "Iterative Algorithm"

Express the comparison function as a rational function:

$\operatorname{Comp}(a,b) = \begin{cases} 1 & if \ a > b \\ \frac{1}{2} & if \ a = b \\ 0 & if \ a < b \end{cases} = \lim_{d \to \infty} \frac{a^{2^d}}{a^{2^d} + b^{2^d}}$ for "division" [Gol64]

Goldschmidt's

iterative algorithm

 $\succ \text{ More specifically, } \frac{a^{2^d}}{a^{2^d}+b^{2^d}} \text{ is evaluated by iterative computations of } a \leftarrow \frac{a^2}{a^2+b^2} \text{ and } b \leftarrow \frac{b^2}{a^2+b^2}$

[Gol64] Goldschmidt, R.E. Applications of division by convergence. Ph.D. thesis, Massachusetts Institute of Technology (1964)

Key Observation

> The previous approach can be interpreted as the following two steps

1. Normalize inputs
$$a \leftarrow \frac{a}{a+b}$$
 and $b \leftarrow \frac{b}{a+b}$ so that $a + b = 1$

2. Iteratively compute a rational function $a \leftarrow f_0(a) = \frac{a^2}{a^2 + b^2} = \frac{a^2}{a^2 + (1-a)^2}$

$$\succ \text{ Re-interpret: } f_0^{(d)} = f_0 \circ f_0 \circ f_0 \circ \cdots \circ f_0 \text{ gets close to } \chi_{\left(\frac{1}{2},\infty\right)}(x) = \frac{\operatorname{sgn}(2x-1)+1}{2} \text{ over [0,1] as } d \leftarrow \infty$$

• The graph represents $f_0^{(d)}$ for d = 1,2,3

Key Observation

> The basic function f does **NOT** need to be the rational function $f_0(x) = \frac{x^2}{x^2 + (1-x)^2}$ which contains **expensive division** operation

 \succ Instead, symmetry w.r.t. (1/2,1/2), convexity, and some other things may be enough

"What are the core properties of f which makes $f^{(d)}$ get close to the sign function?"

"Equivalence":
$$\chi_{\left(\frac{1}{2},\infty\right)} = \operatorname{sgn} = \operatorname{comp}$$

 $\operatorname{comp}(a,b) = \frac{\operatorname{sgn}(a-b) + 1}{2}$

- Core properties of *f* :
 - f(-x) = -f(x)
 - 2. f(1) = 1
 - 3. $f'(x) = c(1 x^2)^n$ for some c > 0

(Origin Symmetry) (Convergence to ± 1) (Faster Convergence; Optional)

Such f is "uniquely" determined for each n:

$$f_n(x) = \sum_{i=0}^n \frac{1}{4^i} \cdot \binom{2i}{i} \cdot x(1 - x^2)^i$$

•
$$f_1(x) = -\frac{1}{2}x^3 + \frac{3}{2}x$$

• $f_2(x) = \frac{3}{8}x^5 - \frac{10}{8}x^3 + \frac{15}{8}x$

Theorem 1. If the number of compositions $d \ge \frac{1}{\log f'_n(0)} \cdot \log\left(\frac{1}{\epsilon}\right) + \frac{1}{\log(n+1)} \cdot \log \alpha + O(1)$, then it holds that $\left\| f_n^{(d)}(x) - \operatorname{sgn}(x) \right\| \le 2^{-\alpha}$ for $x \in [-1, -\epsilon] \cup [\epsilon, 1]$.

Theorem 1. If the number of compositions $d \ge \frac{1}{\log f'_n(0)} \cdot \log\left(\frac{1}{\epsilon}\right) + \frac{1}{\log(n+1)} \cdot \log \alpha + O(1)$ then it holds that $\left\| f_n^{(d)}(x) - \operatorname{sgn}(x) \right\| \le 2^{-\alpha}$ for $x \in [-1, -\epsilon] \cup [\epsilon, 1]$. (The goal of the composition> To put $[\epsilon, 1]$ into $[1 - 2^{-\alpha}, 1]$ $(\operatorname{and} [-1, -\epsilon]$ into $[-1, -1 + 2^{-\alpha}]$)

Theorem 1. If the number of compositions $d \ge \frac{1}{\log f'_n(0)} \cdot \log\left(\frac{1}{\epsilon}\right) + \frac{1}{\log(n+1)} \cdot \log \alpha + O(1)$, then it holds that $\left\|f_n^{(d)}(x) - \operatorname{sgn}(x)\right\| \le 2^{-\alpha}$ for $x \in [-1, -\epsilon] \cup [\epsilon, 1]$. • Core Property 2 and 3 of f_n . Put $[\epsilon, 1]$ into $\begin{bmatrix} \operatorname{Put} [1-\epsilon, 1] \\ 1-\epsilon^{-\alpha}, 1\end{bmatrix}$

- > Adequate for the second goal $[1 c, 1] \Rightarrow [1 2^{-\alpha}, 1]$
- > But, **NOT** necessary for the first goal $[\epsilon, 1] \Rightarrow [1 c, 1]$

g Acceleration method

- > Find g_n optimal to the first goal, and then replace $f_n^{(d)}$ by $f_n^{(d_2)} \circ g_n^{(d_1)}(x) \approx \text{sgn}(x)$ over [-1,1]
- \succ Replace core property 2 and 3 by a **new core property 4** for g_n
- > g_n is much steeper than f_n at zero $(g'_n(0) \approx f'_n(0)^2)$ but not flat at ±1

g Acceleration method

Results

• (Theoretic) New homomorphic comparison algorithms with optimal asymptotic complexity

Parameters	Minimax Approx.	[CKK+19] Method	Our Methods
$\log(1/\epsilon) = \Theta(1)$	$\Theta(\sqrt{\alpha})$	$\Theta(\log^2 \alpha)$	$\Theta(\log \alpha)$
$\log(1/\epsilon) = \Theta(\alpha)$	$\Theta(\sqrt{\alpha}\cdot 2^{\alpha/2})$	$\Theta(\alpha \cdot \log \alpha)$	Θ(α)
$\log(1/\epsilon) = \Theta(2^{\alpha})$	$\Theta(\sqrt{\alpha}\cdot 2^{2^{\alpha-1}})$	$\Theta(\alpha \cdot 2^{\alpha})$	$\Theta(2^{lpha})$

Results

• (Practical) Much faster than the previous [CKK+19] method in practice

• **30 times faster** for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

Precision bits	[CKK+19] method	Our method 1	Our method 2
8	238 s (3.63 ms)*	59 s (0.90 ms)	31 s (0.47 ms)
12	572 s (8.73 ms)*	93 s (1.42 ms)	47 s (0.72 ms)
16	1429 s (21.8 ms)*	151 s (2.30 ms)*	80 s (1.22 ms)
20	2790 s (42.6 ms)*	285 s (4.35 ms)*	94 s (1.43 ms)*

Implementation based on HEaaN with $N = 2^{17}$ and h = 256

An asterisk(*) means that the HEaaN parameter does not achieve 128-bit security due to large $\log Q \ge 1700$

Results

• (Practical) Much faster than the previous [CKK+19] method in practice

• **30 times faster** for the comparison of two 20-bit encrypted integers (with 20-bit output precision)

Precision bits	[CKK+19] method	Our method 1	Our method 2
8	238 s (3.63 ms)*	59 s (0.90 ms)	31 s (0.47 ms)
12	572 s (8.73 ms)*	93 s (1.42 ms)	47 s (0.72 ms)
16	1429 s (21.8 ms)*	151 s (2.30 ms)*	80 s (1.22 ms)
20	2790 s (42.6 ms)*	285 s (4.35 ms)*	94 s (1.43 ms)*
	4~10 times	faster 2~3 t	imes faster

Further Works & Open Questions

- Follow-up study of this work
 - What is the "best choice" of n?
 - ✓ In terms of computational complexity, n = 4 is the best
 - ✓ Then how about in terms of the various HE cost models? (Can we classify the HE cost models?

- \succ Proofs for heuristic properties of g acceleration methods
- In general,
 - > Can we design new homomorphic comparison algorithms from outside of polynomial evaluation framework?
 - > Can we construct a new HE scheme which supports add, mult and comparison as basic operations?

